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Optimal Long-Term Contracting with Learning

investing in companies with new technologies or firms hiring fresh graduates.
Unfortunately, for reasons stated later, the study of long-term contracting with
learning is challenging.

We introduce uncertainty and learning into the classic Holmstrom and
Milgrom (1987) model with a constant absolute risk aversion (CARA) agent.
We choose Holmstrom and Milgrom (1987) for two reasons. First, the
Holmstrom and Milgrom (1987) model has a tractable dynamic CARA-normal
framework that nicely accommodates learning, and we consider an infinite-
horizon variation of Holmstrom and Milgrom (1987) with stationary learning
to maintain tractability. Second, against the Holmstrom and Milgrom (1987)
benchmark in which the optimal contract is linear, we show that uncertainty and
learning make the optimal compensation contract option-like; that is, incentives
rise following good performance.

In our model the principal signs a long-term contract with the agent, with
commitment by both parties. The observable output each period is the sum
of the agent’s unobservable effort, the project’s unknown profitability (or the
agent’s unknown ability), and some transitory noise. To focus on learning only
(rather than adverse selection), we assume that both the principal and agent
share a common prior on the project’s profitability when signing the long-term
contract.

Unlike Holmstrom and Milgrom (1987), incentive provisions become
intertemporally linked over time because of learning. The intertemporal linkage
of incentive provisions is rooted in the hidden information problem.1 Along
the equilibrium path, the principal knows as much as the agent knows, because
both start with the common prior. However, along off-equilibrium paths, the
agent strictly knows more, because only the agent knows how much actual
efforts deviate from the recommended level of effor. Specifically, imagine that
the agent has followed the recommended effort policy in the past; thus both
parties share the same correct belief about the project’s profitability. If the
agent shirks today by exerting some effort below the recommended level, then
the lower effort decreases today’s output on average. With Bayesian learning,
the principal who anticipates a higher effort today would mistakenly attribute
today’s weak performance to lower profitability. Thus, by shirking today the
agent can distort downward the principal’s inference about profitability from
today onward, which is long-lasting (i.e., persistent hidden information). This
belief manipulation effect is beneficial to the agent, as the principal will
mistakenly reward the agent whenever future performance beats the principal’s
downward distorted expectations. We refer to this potential benefit due to
off-equilibrium private information as the agent’s information rent.

1 This is in contrast to the standard hidden action dynamic agency models in which the agent’s unobservable
shirking has only a short-lived effect. For recent development of dynamic contracting in finance, see DeMarzo
and Fishman (2007), Biais et al. (2007), DeMarzo and Sannikov (2006), He (2009), Piskorski and Tchistyi (2010),
DeMarzo et al. (2012), and Malenko (2013), among others.
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In solving the optimal contract with learning, we need the information rent
as the second state variable, in addition to the agent’s continuation value. The
information rent captures the marginal benefit of the agent’s shirking due to the
belief manipulation effect, and hence enters the agent’s incentive compatibility
constraint. The higher the future incentives (i.e., pay–performance sensitivity),
the greater the information rent, and the lower the agent’s current motivation to
expend effort. We show that the information rent can be conveniently expressed
as the sum of properly discounted future incentives, and the agent’s optimal
effort is simply the instantaneous incentive minus the information rent due to
the belief manipulation effect. Thanks to the CARA preference that has no
wealth effect, the agent’s continuation value separates from the problem, and
the optimal contract is fully characterized by an ordinary differential equation
(ODE) with the information rent as the only state variable. Although we use
the first-order approach to solve for the optimal contract, we verify the validity
of the first-order approach in Section 3.4 by identifying an upper bound of
the agent’s deviation value. Section 3.5 discusses how CARA preferences and
private savings render the tractability in our model.

Relative to the existing literature of long-term contracting with learning,
which focuses on implementing a constant first-best effort (DeMarzo and
Sannikov 2017; Prat and Jovanovic 2014), our paper highlights two interesting
features in the optimal contract. First, in our model the optimal effort policy,
which is always distorted downward relative to the first-best benchmark, has a
negative drift, thus exhibiting a front-loaded or time-decreasing pattern. This
is somewhat surprising. We have explained that under a given contract the
information rent makes the agent want to work less in earlier periods, and
casual readers might conclude that in the optimal contract the agent should
work less earlier. However, the opposite holds in the optimal contract: The
principal will purposefully give higher incentives early on so that the agent
works harder in earlier periods in equilibrium.

In Section 4.1, we solve in closed form the optimal deterministic contract
(i.e., the optimal one among the contracts in the subspace that implements
deterministic but time-varying incentives only), and show analytically that
the optimal deterministic effort policy decreases over time. This pattern
holds in the optimal stochastic contract, and the intuition is a result of the
belief manipulation effect. As mentioned, later incentives increase the agent’s
current information rent for shirking. This implies that future pay–performance
sensitivities impair the agent’s motivation for expending effort in earlier
periods, but not the other way around. Given that later incentives are more
costly, the optimal contract implements less effort in later periods.2

2 Interestingly, the pattern of time-decreasing effort policy in our paper with post-contracting information
asymmetry is opposite of the dynamic contracting setting with pre-contracting asymmetric information in Garrett
and Pavan (2012). In that paper, under the assumptions that the agent privately observes his productivity at
the time of signing the contract and that the effect of initial productivity on future productivity is declining
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Second, the optimal contract is stochastic with higher incentives after good
performance, exhibiting an option-like feature.3 The intuition is the result of
reducing the agent’s belief manipulation in a long-term relationship. For a
risk-averse agent, the amount of information rent not only depends on the
benefits of belief manipulation that increase with future pay–performance
sensitivities, but also the agent’s marginal utility at future states when receiving
those benefits. Raising incentives after good performance introduces a negative
correlation between pay-for-performance and marginal utility. That is, greater
future benefits from belief manipulation are associated with the states when
the agent cares less. Hence, the option-like compensation contract lowers the
agent’s information rent standing today.

The combination of long-term contracting and learning that drives front-
loaded and option-like incentives. On the one hand, with long-term contracting
but no learning, the model is a simple extension of Holmstrom and Milgrom
(1987) and a constant effort policy is optimal (Section 3.3). On the other
hand, with learning but short-term contracting, the absence of commitment
due to the nature of short-term contracting relationships implies that principals
at different times will not take the aforementioned belief manipulation effect
into account. In that case, similar to Holmstrom (1999), the Gaussian setting
with stationary Bayesian learning gives rise to a constant effort process in
equilibrium (Section 4.4).

We rely on specific assumptions (i.e., CARA preferences, private savings,
stationary Gaussian setting) to fully characterize the optimal long-term contract
with learning. However, the economic forces that are driving our main results
do not depend on CARA preferences or Gaussian processes. First, in any long-
term contracting environment with learning, it is generally true that the agent
obtains information rent due to belief manipulation, which captures his desire
to shirk so as to distort the principal’s future belief downward. This result
implies that later incentives enter the agent’s forward-looking information rent
in earlier periods (but not the other way around). Consequently, later incentives
are more costly than earlier ones, giving rise to the time-decreasing effort policy.
Second, the option-like feature relies solely on the concavity of the agent’s
utility function, so that the marginal value of earning future (potential) belief
manipulation benefit is lower for the agent after good performance; hence higher

over time, the optimal effort policy is time-increasing. Intuitively, in Garrett and Pavan (2012), the downward
distortion required for rent extraction is more severe in earlier periods when the major friction is pre-contracting
private information. It is intriguing that pre-contracting private information and post-contracting information have
opposite predictions for the time-series pattern of effort distortion, but the difference in Garrett and Pavan (2012)
also lies in the agent being risk neutral without wealth constraint. Relatedly, Sannikov (2014) allows the agent’s
current effort to affect future fundamental, and Marinovic and Varas (2016) study the optimal contract when the
agent can engage in manipulation to boost short-term performance, but with negative long-term consequences.

3 That effort policy is history-dependent is surprising given our setting. With a standard CARA-normal setting
and learning, as the posterior variance only changes deterministically over time (in our stationary setting, it is
a constant), the resultant equilibrium effort profile is usually deterministic (e.g., Gibbons and Murphy 1992;
Holmstrom 1999). In contrast, in our model with learning, the optimal long-term contract has an option-like
feature in that pay-for-performance rises following good performance.
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compensation. Since these economic forces are fairly general, our two main
qualitative results–front-loaded effort policy and option-like compensation–are
likely robust to other more general settings.

Our model offers some interesting empirical implications. In particular, it
provides a mechanism that demonstrates why option-like payoffs are desirable
in managerial compensation. In practice the use of option-based compensation
is no doubt pervasive.4 Interestingly, traditional static models typically do not
predict option grants.5 For example, Dittmann and Maug (2007) calibrate a
standard static structural model and find that most CEOs should hold more
straight equity, hold no stock options, and receive lower salaries. The option-
like features of the optimal contract in our paper shed light on the “2-20” and
high-water-mark contracts that are widely used in the hedge fund industry. As
shown in our paper, that hedge fund contracts exhibit option-like features may
well be due to learning about persistent unobservable managerial ability as
well as the commitment associated with long-term contracting in the hedge
fund industry. In addition, our model also predicts that industries with higher
uncertainty should grant more stock options to their managers. The latter cross-
sectional prediction is consistent with the evidence in Ittner, Lambert, and
Larcker (2003) and Murphy (2003), who document more extensive use of
stock options in new-economy firms (e.g., computer-related firms).

Our paper is closest to DeMarzo and Sannikov (2017) and Prat and
Jovanovic (2014). As mentioned earlier, both papers deal with long-lasting
belief manipulation effect in dynamic agency settings with learning, but restrict
attention to the optimal contract that implements a constant first-best level of
effort. Prat and Jovanovic (2014) focus on the role of intertemporal commitment
in optimal contracting. DeMarzo and Sannikov (2017) impose limited liability
constraint on the agent and study the optimal payout and termination policies.
In contrast, we solve for the optimal effort policy jointly with the optimal long-
term compensation contract and emphasize the general economic mechanisms
that shape the optimal effort policy in long-term optimal contracting. As
discussed previously, the two main results of our optimal contract, that is, front-
loaded effort policy and option-like incentives, cannot hold in the contracting
space with constant effort policy.

The long-lasting belief manipulation in dynamic contracting also exists in
Bergemann and Hege (1998) and Horner and Samuelson (2013). In Bergemann
and Hege (1998), an agent keeps working on a project which may succeed with
some probability depending on its quality, and the game ends once the project

4 Hall and Liebman (1998), for example, show a large increase in the use of stock options in CEO compensation
for incentive provisions.

5 There are a few exceptions in a dynamic framework. For instance, Edmans and Gabaix (2011) show that the
convexity of the contract depends on the marginal cost of effort. In Ju and Wan (2012), stock options become
optimal when the agent has to be paid above a certain subsistence level.
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succeeds.6 The project quality and the agent’s effort affect the project success in
a multiplicative way, that is, success may occur only if the project is good and
the agent is working. In contrast, our model features an additive production
function in which the marginal productivity of effort is independent of the
project quality.

The topic of optimal contracting with endogenous learning also relates to the
recent literature studying optimal long-term contracts with adverse selection
and moral hazard (e.g., Baron and Besanko 1984; Sung 2005; Sannikov 2007;
Garrett and Pavan 2012; Gershkov and Perry 2012; Halac, Kartik, and Liu
2016; Cvitanic, Wan, and Yang 2013).7 In general, when the agent has pre-
contracting private information that is persistent, a mechanism design approach
naturally arises (e.g., Pavan, Segal, and Toikka 2014; Golosov, Troshkin, and
Tsyvinski 2012).8 However, because our paper focuses on the problem without
pre-contracting private information, we do not need to solve for the optimal
menu for the agent’s truthful reporting when signing the contract.

1. Model

1.1 Setting
Consider a continuous-time infinite-horizon principal-agent model with a
common constant discount rate r >0. The project generates a cumulative output
Yt up to time t , which evolves according to

dYt =(μt +θt )dt +σdBt , (1)

where {Bt } is a standard Brownian motion on a complete probability space
(Ω,F,P), μt is the agent’s unobservable effort level, θt is the project’s
profitability, and the constant σ >0 is the volatility of cash flows. Moral
hazard arises from the agent’s unobservable effort choice, which affects the
instantaneous cash-flow dYt .

6 This assumption is crucial for the tractability of Bergemann and Hege (1998). It is worth noting that the “real
option” mentioned in the abstract of Bergemann and Hege (1998) is different from our result. In our paper,
“option-like incentives” refer to the fact that incentives rise after good performance; but in their paper the game
ends after any good performance (i.e., project success).

7 Other papers that are related to learning but do not deal with the belief manipulation effect.Adrian and Westerfield
(2009) focus on the disagreement between the principal and the agent about the agent’s ability, where the agent
is dogmatic about his belief (i.e., the agent never updates his posterior belief about profitability from past
performance), which eliminates the belief manipulation effect. In that paper, although the agent could distort the
principal’s belief by shirking, the dogmatic agent (who does not realize that the firm’s profitability is, in fact,
higher than that perceived by the principal) will not gain anything from this channel, and as a result there is no
belief manipulation effect. More recently, Cosimano, Speight, and Yun (2011) study the long-term contracting
problem with binary unobservable productivity states, and show that the optimal contract tends to be sticky.
They assume that the agent’s effort is observable but not contractible, and hence both the principal and the agent
always have the same information set, on both equilibrium and off-equilibrium paths.

8 Pavan, Segal, and Toikka (2014) and Golosov, Troshkin, and Tsyvinski (2012) use the first-order approach to
solve the agent’s problem. This is the same approach used in Williams (2009, 2011) and Zhang (2009), who
study persistent information in a continuous-time principal-agent setting. We also use the first-order approach to
solve the agent’s problem and verify the validity of the first-order approach in Section 2.4.
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The risk-neutral principal (hereinafter she) offers the CARA agent
(hereinafter he) a contract {ct ,μt }, so that the agent is recommended to take
the effort policy μ= {μt } and is compensated by the wage process c= {ct }.
Both elements are measurable to Yt ≡F {Ys :0≤s ≤ t}, which is the filtration
generated by the output history. Both parties can commit to the long-term
relationship at t =0, at which point the agent has no personal wealth and has an
exogenous reservation utility of v0. Without loss of generality, we assume the
principal has all the bargaining power.

Relative to Holmstrom and Milgrom (1987), we introduce the project’s
unknown profitability θt into the output process in Equation (1). Equivalently,
one can interpret θt as the agent’s unknown ability. We assume that profitability
{θt } follows a martingale process so that

dθt =φσdBθ
t ,

where the Brownian motion
{
Bθ
}

is independent of {B}, and φ>0 is a
constant. At time 0, the principal and the agent share the common normal
prior: θ0 ∼N (

m0,�
θ
0

)
. We mainly focus on stationary learning; we discuss

nonstationary learning for robustness checks in the Internet Appendix. For
learning to be stationary, the prior uncertainty is assumed to satisfy �θ

0 =σ 2φ,
so that the posterior variance �θ

t =�θ
0 for all t and Bayesian updating is time

independent. When φ =0, our model features no uncertainty (or, θt is perfectly
observable), and thus is reduced to the benchmark model of Holmstrom and
Milgrom (1987), as analyzed in Section 3.3.

We further assume that the agent can privately save (i.e., hidden savings, or
consumption is not contractible) to smooth his consumption intertemporally,
if he wishes. CARA preferences do not have a wealth effect, and the issue
of private savings can be easily dealt with (e.g., Fudenberg, Holmstrom, and
Milgrom 1990; Williams 2009; He 2011). In Section 3.5, we explain the reason
why the agent’s ability to smooth his own consumption renders extra tractability
for this model.

Private savings imply that the agent’s actual consumption can differ from
wage ct . The agent’s actual consumption is represented by ĉt and actual effort
by μ̂t ; then the agent with a CARA preference (exponential utility) has an
instantaneous utility of

u (̂ct ,μ̂t )=−1

a
exp[−a (̂ct −g(μ̂t ))],

where a>0 is the agent’s absolute risk-aversion coefficient, and g(μ̂t )≡ 1
2 μ̂2

t is
the instantaneous quadratic monetary cost of exerting effort μ̂t .9 The quadratic
form of g(·) simplifies our results, but our analysis holds as long as g(·) is
strictly increasing and strictly convex.

9 In the tradition of Holmstrom and Milgrom (1987), the CARA preference allows for negative consumption; that
is, both ct and ĉt can take negative values. In contrast, in DeMarzo and Sannikov (2017) the agent is protected
by limited liabilities, and hence the endogenous contract termination arises. It is unclear how the limited-liability
restriction affects the qualitative results of our paper.
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1.2 Bayesian learning and effort
Recall that at time 0, the principal and the agent share the common normal
prior θ0 ∼N (

m0,�
θ
0

)
. From now on we normalize m0 =0. Both parties update

their beliefs based on their own respective information sets. Recall that
Yt =F {Ys :0≤s ≤ t} is the augmented filtration generated by output path
Y . Given any contract {ct ,μt }, the principal’s information set at time t is
F {Ys,μs :0≤s ≤ t}, as the principal knows the recommended effort policy
μ≡{μt }. However, the agent’s information set also includes his actual effort
policy μ̂≡{μ̂t }, that is, F {Ys,μs,μ̂s :0≤s ≤ t}. Intuitively, relative to the
principal, the agent knows (weakly) more because he knows his actual past
effort choices μ̂, which may deviate from the recommended policy μ. This
distinction is important for our analysis.

If the agent follows the recommended effort policy μ, the principal’s
posterior belief about θt is correct and fully summarized by the first two
moments:

m
μ
t ≡E[θt |Yt ,μ ] and �

θ,μ
t ≡E

[(
θt −m

μ
t

)2 |Yt ,μ
]
.

Astandard filtering argument (e.g., Theorem 12.2 in Liptser and Shiryaev 1977)
implies that �

θ,μ
t =σ 2φ for all t (due to the stationary assumption �θ

0 =σ 2φ),
and

dm
μ
t =�

θ,μ
t

dYt −
(
μt +m

μ
t

)
dt

σ 2
=σφdB

μ
t with m0 =0, (2)

where B
μ
t is a standard Brownian motion under the measure induced by the

effort policy μ:

dB
μ
t ≡ dYt −

(
μt +m

μ
t

)
dt

σ
. (3)

Conditional on the actual effort policy {μ̂t }, the agent forms his posterior
belief as

m
μ̂
t ≡E[θt |Yt ,μ̂ ] and �

θ,μ̂
t ≡E

[(
θt −m

μ̂
t

)2 |Yt ,μ̂

]
.

The superscript μ̂ emphasizes the dependence on the agent’s actual effort policy
μ̂ (which the principal does not know). Similarly, �

θ,μ̂
t =σ 2φ for all t, and

dm
μ̂
t =�

θ,μ̂
t

dYt −
(
μ̂t +m

μ̂
t

)
dt

σ 2
=σφdB

μ̂
t , with m0 =0, (4)

where B
μ̂
t is a standard Brownian motion under the measure induced by the

actual effort policy μ̂:

dB
μ̂
t ≡

dYt −
(
μ̂t +m

μ̂
t

)
dt

σ
. (5)
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1.3 Formulating the optimal contracting problem
We first state the agent’s problem. St denotes the balance of the agent’s savings
account, which earns interest at the constant rate r >0. Given the contract
{ct ,μt } the agent’s problem is

max{̂c,μ̂} E
μ̂

0

[∫ ∞

0
e−rtu (̂ct ,μ̂t )dt

]
(6)

s.t. dYt =
(
μ̂t +m

μ̂
t

)
dt +σdB

μ̂
t ,

dSt = rStdt +ctdt − ĉt dt with S0 =0,

with the transversality condition, say the saving balance St has to be
bounded.10 Here, E

μ̂ [·] denotes the expectation under the probability measure
induced by the actual effort policy {μ̂t }, and {̂ct } is the actual consumption
policy. Denote the optimal solution to Problem (6) by

{
c�
t ,μ

�
t

}
.

We call the contract {ct ,μt } incentive-compatible and no-savings if, given
the contract {ct ,μt }, the solution to the agent’s problem in Equation (6) is
c�
t =ct and μ�

t =μt , which further implies St =0 for any t (i.e., no private
savings at any time). In other words, the agent finds it optimal to consume
his wages and work as recommended. As a standard result in the literature,
the following lemma shows that there is no loss of generality by restricting
attention to incentive-compatible and no-savings contracts. The idea is similar
to the revelation principle. Once the principal knows the agent’s actual effort
policy, she will perform correct Bayesian updating based on that policy; and
since the principal can fully commit to the contract, she can save for the agent.
Note, the optimal no-savings contract also can be implemented by some other
compensation scheme in which the agent saves for himself.

Lemma 1. It is without loss of generality to focus on contracts that are
incentive-compatible and no-savings.

Proof. The Appendix provides all proofs. �

The optimal contract solves the principal’s problem:

max
{ct ,μt } is incentive-compatible and no-savings

E
μ

0

[∫ ∞

0
e−rt (dYt −ctdt)

]
, (7)

so that dYt =
(
μt +m

μ
t

)
dt +σdB

μ
t , and

E
μ

0

[∫ ∞

0
e−rtu(ct ,μt )dt

]
=v0. (8)

10 In Appendix A.3, we explicitly impose the assumption of private savings being bounded in Assumption 1 in the
proof of Proposition 1.
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Equation (8) is the agent’s participation constraint at t =0 for the agent with
a reservation value v0. Since negative transfers are allowed, this participation
constraint at t =0 must bind.

2. The Agent’s Problem

In this section we illustrate heuristically the necessary conditions for a contract
{ct ,μt } to be incentive-compatible and no-savings.

2.1 Continuation value and incentives
Given the incentive-compatible and no-savings contract {ct ,μt }, the agent’s
continuation value, which is his expected payoff from the continuation contract,
is defined as:

vt ≡E
μ
t

[∫ ∞

t

e−r(s−t)u(cs,μs)ds

]
. (9)

According to the standard martingale representation argument (e.g., Sannikov,
2008), there exists some progressively measurable process {βt } so that

dvt = rvtdt −u(ct ,μt )dt +βt (−arvt )
(
dYt −μtdt −m

μ
t dt

)
(10)

= rvtdt −u(ct ,μt )dt +βt (−arvt )σdB
μ
t .

We can interpret βt as the dollar incentive on the agent’s unexpected
performance. From Sannikov (2008), we know that βt (−arvt ) can be
interpreted as the incentive loading–measured in the agent’s utilities–on his
unexpected performance dYt −m

μ
t dt . We show shortly that (−arvt )>0 is the

agent’s marginal utility from consumption at time t, that is, uc (ct ,μt ). As a
result, dividing utility incentives βt (−arvt ) by the marginal utility yields dollar
incentives received by the agent. This is important for model tractability: As we
show later in Section 2.4.1, using dollar incentives allows us to cancel (−arvt )
and derive a simple expression for the agent’s incentive compatibility condition
that is independent of his continuation value vt .

Later, we simply refer to pay–performance sensitivities {βt } as incentives.
Throughout the paper, we impose a further technical condition for ease of our
analysis. Essentially, we restrict the feasible incentive slopes {βt } to be bounded,
that is, some sufficiently large constant M exists such that βt ∈ [−M,M]. This
assumption ensures that the endogenous state variable in the problem, the
expected (properly) discounted future incentives, is bounded for any feasible
contracts. Later, we will show that, given this restriction, the optimal incentives
are independent of the exogenous bound M .11

11 This boundedness assumption shares the same spirit as imposing a transversality condition. For instance, in the
standard consumption-portfolio problem, to rule out Ponzi schemes, one often imposes the agent’s wealth being
bounded from below. In that context, the optimal portfolio strategy is also independent of the lower bound for
the agent’s wealth.
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2.2 No savings
Following He (2011), we first show that the no-savings condition under CARA
preferences implies that

rvt =u(ct ,μt )=−1

a
exp[−a (ct −g(μt ))]. (11)

We have the following lemma for any compensation contract, 	.

Lemma 2. At any time t ≥0, consider a deviating agent who has some
arbitrary savings S and faces the continuation contract 	t . vt (S;	) denotes
the deviation continuation value. We have

vt (S;	)=vt (0;	)·e−arS =vt ·e−arS , (12)

where we have used the fact that vt (0;	) is the agent’s continuation value vt

along the no-savings path defined in Equation (9).

The driving force behind this result is simple. Due to CARA preferences, the
agent’s problem is translation-invariant with respect to his underlying wealth
level, as evident by u(cs +rS,μs)=e−arSu(cs,μs). Thus, for a CARA agent,
given the extra savings S, his new optimal deviation policy is to take the
optimal consumption-effort-learning policy without savings–which explains
vt in Equation (12), and to consume an extra rS more uniformly across all
future dates/states–which explains the adjusting factor e−arS in Equation (12).

The optimality of the agent’s consumption-savings policy implies that his
marginal utility from consumption must equal his marginal value of wealth.
Equation (12) then implies that:

uc (ct ,μt )=
∂vt (S;	)

∂S

∣∣∣∣
S=0

due to (12)
= −arvt . (13)

Equation (11) follows immediately from Equation (13) because under CARA
preferences, the agent’s utility level is linear in his marginal utility:

au(ct ,μt )=−uc (ct ,μt ). (14)

Once we have established the key result in (11), we can plug it back into
Equation (10), and find that vt follows an (exponential) martingale:

dvt =βt (−arvt )σdB
μ
t ⇔vs

=vt exp

(
−
∫ s

t

arβuσdBμ
u − 1

2

∫ s

t

a2r2β2
uσ

2du

)
for s >t.12 (15)

Intuitively, a good performance dB
μ
u = 1

σ

(
dYt −μtdt −m

μ
t dt

)
for u∈ [t,s]

increases vs (recall vt <0 for CARA preferences), all else being equal. That
vs/vt only depends on incentives {βu}s≤u≤t is key to tractability for later
analysis.

12 Because |β|<M is bounded, the local martingale {vt } is indeed a martingale. This result can also be understood
by combining two observations: First, the agent can smooth out his consumption intertemporally, and hence his
marginal utility has to follow a martingale. Second, his continuation value vt is linear in his marginal utility uc

because of Equations (13) and (14).
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2.3 Effort and belief distortion
The difficulty of introducing learning into the dynamic moral hazard problem
is not learning per se. Rather, the challenge is to deal with the issue of belief
manipulation: the agent, simply by shirking from the recommended effort today,
can distort the principal’s future beliefs about project profitability downward.

Consider the following thought experiment. Suppose that at time t the agent
exerts an effort level μ̂t below the recommended effort μt , and thus output is
lower than what is expected by the principal on average. Crucially, however,
the principal thinks the agent is exerting an effort of μt—thus she (through
learning) mistakenly attributes lower output to a lower value of profitability θt .
In contrast, the agent updates profitability θt based on his true effort level μ̂t ,

leading to a positive wedge m
μ̂
t −m

μ
t =E[θt |Yt ,μ̂ ]−E[θt |Yt ,μ ] between the

beliefs of the agent and principal. In other words, by shirking, the agent makes
the principal (mistakenly) underestimate profitability. This belief manipulation
is beneficial to the agent in a dynamic setting—when future outputs turn out
to be high, the agent gets rewarded for high profitability (based on the agent’s
correct information set) rather than his effort.

The above logic implies that any current effort deviation has a long-lasting
effect in distorting the principal’s belief, and we now formalize this effect.
When the agent deviates from the recommended effort path {μ} by choosing
effort policy {μ̂}, the principal’s belief about θs for s >t is distorted downward.
This distortion, represented by �s , has the following intuitive expression:

�s ≡mμ̂
s −mμ

s =φ

∫ s

0
e−φ(s−u) (μu−μ̂u)du.13 (16)

Intuitively, the current belief distortion at time s equals the agent’s cumulative
effort deviations in the past u∈ [0,s], with a discount factor of φ. When φ =0,
the zero prior uncertainty �θ

0 =σ 2φ =0 eliminates any belief divergence, and
the issue of belief manipulation is absent.

Figure 1 heuristically illustrates the long-lasting belief distortion effect for a
one-time effort deviation. The left panel shows that the solid line, which is the
agent’s actual effort {μ̂}, lies below the dashed line, which is the recommended
effort {μ}, only at time interval [t,t +dt], for some t . Let us say μ̂t =μt −ε,
and for illustration we have assumed that {μ} takes a constant value. The right
panel shows that this one-shot deviation triggers a long-lasting belief distortion
with a decaying factor φ:

�s =mμ̂
s −mμ

s =ε ·φe−φ(s−t)dt for s >t. (17)

13 According to Equations (2) and (4), we have:

d�t =dm
μ̂
t −dm

μ
t =φ

(
dYt −

(
μ̂t +m

μ̂
t

)
dt
)
−φ

(
dYt −

(
μt +m

μ
t

)
dt
)

=φ (μt −μ̂t −�t )dt,

which leads to the expression of �t in (13). Here, we have used �0 =0, as both parties share the common prior
when signing the contract.
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Figure 1
Long-lasting belief distortion (right) due to a one-time effort deviation (left). For illustration, we assume μt takes
a constant value. The agent shirks at [s,s+ds] so that μ̂s =μs −ε; this triggers a long-lasting belief distortion

�t =m
μ̂
t −m

μ
t =ε ·φe−φ(t−s) so that the agent knows that the project is better than the principal thought (in

off-equilibrium path).

Intuitively, as new information flows in, this belief divergence persists but
decays over time exponentially at the rate of φ. As a result, even at time s >t ,
the principal mistakenly thinks the project is of a worse quality than the agent
thinks.

As suggested by Equation (10), the contract relies on the agent’s
“unexpected” performance along the equilibrium path dYs −

(
μs +m

μ
s

)
ds. This

equals σdB
μ
s under the equilibrium measure and has a mean of zero. For the

agent who deviates by exerting μ̂ 	=μ, under his information set the above
“unexpected” performance no longer has zero mean. Suppose that the agent
has deviated before s so that μ̂t 	=μt where t <s. Even if the agent exerts the
same effort at time s so that μs = μ̂s , Equation (5) implies that

dYs −
(
μ̂s +mμ̂

s

)
ds =dYs −

(
μs +mμ̂

s

)
ds (18)

has zero mean under the agent’s information set. Hence, the “unexpected”
performance dYs −

(
μs +m

μ
s

)
ds displays a positive drift under the agent’s

information set:

dYs −
(
μs +mμ

s

)
ds =

[
dYs −

(
μs +mμ̂

s

)
ds
]︸ ︷︷ ︸

zero mean under agent’s info. set

+ �sds︸ ︷︷ ︸
belief divergence

,

Like in the previous example, a one-shot deviation in the past μ̂t <μt with
t <s implies that �s >0. Intuitively, the principal would mistakenly think the
project is worse than it actually is (under the agent’s correct measure), and the
agent can easily beat the principal’s expectation and hence gain by �sds >0
for all future s >t .
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2.4 Incentive compatibility constraint and intuition
Proposition 1 characterizes the agent’s incentive compatibility constraint, along
with the equilibrium consumption and continuation value heuristically derived
above. We provide a rigorous proof for Proposition 1 in Appendix A.3. We also
highlight that the agent’s incentive compatibility constraint in Proposition 1
is essentially the agent’s first-order condition in his effort decision, and we
further show that the first-order condition is also sufficient for the agent’s global
optimality in Section 3.4, given certain conditions imposed on the derived
optimal contract.

Proposition 1. Agent’s incentive compatibility constraint. For the contract
{ct ,μt } to be incentive-compatible and no-savings, {βt } must satisfy

μt = βt︸︷︷︸
instantaneous incentive

−E
μ
t

[∫ ∞

t

φe−(φ+r)(s−t) βsvs

vt

ds

]
︸ ︷︷ ︸

future information rent pt

=βt −pt (19)

where pt denotes “information rent”:

pt ≡E
μ
t

[∫ ∞

t

φe−(φ+r)(s−t)βs exp

(
−
∫ s

t

arβuσdBμ
u − 1

2

∫ s

t

a2r2β2
uσ

2du

)
ds

]
,

(20)
as the exp term inside the bracket equals vs/vt , using Equation (12). In addition,
Equation (11) implies that consumption (or wage) follows

ct =g(μt )− ln(−arvt )

a
, (21)

and the continuation payoff from the contract is

vt =v0exp

(
−
∫ t

0
arβsσdBμ

s − 1

2

∫ t

0
a2r2β2

s σ
2ds

)
. (22)

In a standard dynamic agency problem without profitability uncertainty (e.g.,
φ =0), the agent’s effort μt at time t should depend only on the time-t incentive
βt offered by the contract (i.e., μt =βt ; recall the quadratic effort cost g(μt )=
μ2

t /2). With learning and associated belief-manipulation, the agent’s effort
decisions across periods are interlinked, as evident by the forward-looking
nature of the second downward adjustment term in Equation (19).

The forward-looking downward adjustment term represents the information
rent to the agent. Intuitively, this term captures the marginal benefit of
manipulating the principal’s future belief downward.14 Also, the expression
in (19) implies that the agent’s continuation payoffs {v} drop out, which allows
us to write the agent’s incentive compatibility constraint independent of {v}.
This convenient property is crucial for the tractability of our problem.

14 This information rent term captures the marginal rent that the agent may enjoy by deviating from the
recommended effort slightly, rather than the rent that the agent actually enjoys in equilibrium; in equilibrium
the principal knows the agent’s actual effort exactly. Nevertheless, like in any typical moral hazard model,
the marginal deviation benefit (marginal rent) is important in characterizing the agent’s incentive-compatibility
condition.
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2.4.1 Intuition for the incentive compatibility constraint. The rest of
this subsection is devoted to understanding the key incentive compatibility
constraint (19). Consider again the example in Section 2.3 in which the agent
reduces his effort to slightly below the recommended effort level μt , say μt −ε,
only at the time interval [t,t +dt]. In other words, given the recommended
policy {μ}, the deviation effort policy is

με ≡
{

μs for s /∈ [t,t +dt];
μs −ε otherwise.

(23)

What is the impact of this deviation effort policy on the agent’s total payoff
from time t onwards, including his instantaneous utility?

In Appendix A.4, we show that, under the new effort policy με , the agent’s
continuation payoff together his instantaneous flow payoff at t can be written
as

u(ct ,μt −ε)dt +vt +E
με

t

[∫ ∞

t

e−r(s−t)dvs

]
, (24)

where E
με

t emphasizes that the agent forms his expectation based on his
information set induced by με . Using the result in Equation (12), we can rewrite
(24) heuristically as:

u(ct ,μt −ε)dt +vt +E
με

t

{
βt (−arvt )

(
dYt (μt −ε)−μtdt −m

μ
t dt

)
+∫∞

t+dt
e−r(s−t)βs (−arvs )

[
dYs −(μs +m

μ
s

)
ds
]}

= u(ct ,μt −ε)dt
saving effort cost instantaneously

+vt +

E
με

t

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

βt (−arvt )
(
dYt (μt −ε)−μtdt −m

μ
t dt

)︸ ︷︷ ︸
hurting performance instantaneously

+

∫ ∞

t+dt

e−r(s−t)βs (−arvs )

⎡⎣ (
dYs −

(
με

s +mμε

s

)
dt
)

martingale under info set generated by μ

+ �sds
belief divergences

⎤⎦
︸ ︷︷ ︸

creating belief divergence persistently

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

(25)

There should be another correction term in
(
με

s −μs

)
ds in the second

equality, but it is zero because of (23), that is, we consider a one-shot deviation
at time t from the equilibrium effort policy.

There are two channels through which shirking at time t affects the agent’s
continuation value. The first channel captures the instantaneous performance
effect, that is, the agent’s effort affects instantaneous performance dYt and,
thus, his continuation value. To see this, write performance dYt (μt ) over
[t,t +dt] as a function of time-t effort μt . Exerting effort μt −ε hurts the
short-term performance over [t,t +dt] because

dYt (μt −ε)= (μt −ε)dt +m
μ
t dt +σdB

μ
t =dYt (μt )−εdt.

Modulated by incentives, this leads to a drop in the agent’s continuation value
by βt (−arvt )·εdt , via the channel of “hurting performance instantaneously.”

2020

Downloaded from https://academic.oup.com/rfs/article-abstract/30/6/2006/2992922
by Tsinghua University library user
on 10 April 2018



Optimal Long-Term Contracting with Learning

The second channel is the persistent effect due to belief manipulation. As
discussed in Section 2.3, the agent’s shirking at time t shifts the belief diver-
gence path {�s} away from the equilibrium path {�s =0} for s >t , according to
Equation (13).

We show that the incentive compatibility constraint in Equation (19) is
implied by Equation (25). By “reducing effort cost instantaneously” in Equation
(25), the agent’s marginal gain from shirking at t is −uμ (ct ,μt )·εdt . Since
uμ (ct ,μt )=−uc (ct ,μt )μt =arvtμt , this marginal gain is (−arvt )μt ·εdt . On
the other hand, shirking “hurts performance instantaneously” in Equation (25),
which gives rise to a marginal cost of βt (−arvt )·εdt . In standard models
without belief manipulation, these two forces fully determine the agent’s
trade-off in choosing his optimal effort at time t .

Next we analyze the novel term “creating belief divergence persistently” in

(25). There, because dYs −
(
με

s +m
με

s

)
dt has zero mean, this term equals

E
με

t

[∫ ∞

t

e−r(s−t)βs (−arvs)�sds

]
. (26)

Recall that Equation (17) says that the belief divergence in any future time s >t

is �s =φe−φ(s−t)εdt . Plugging in to (26), the marginal impact of shirking via
the channel of belief manipulation is

E
μ
t

⎡⎢⎣∫ ∞

t

φe−(φ+r)(s−t) βs︸︷︷︸
future incentives

(−arvs)︸ ︷︷ ︸
marginal utility

ds

⎤⎥⎦·εdt +o(εdt).15

Intuitively, if the principal mistakenly believes that the project is less profitable
than it should be, the agent’s normal performance will be considered superb.
The higher-powered the future incentives {βs}, the greater the information rent.
And, for a risk-averse agent, the information rent depends on the agent’s future
marginal utility (−arvs) when receiving these manipulation benefits.

Combining three pieces together (canceling εdt and ignoring higher-order
terms), and dividing both sides by time-t marginal utility (−arvt ), we arrive at
the agent’s incentive compatibility constraint as Equation (19).

3. Principal’s Problem and Optimal Contracting

From now on we focus on incentive-compatible contracts such that both parties
will have the same information set along the equilibrium path. As a result, we
write dB

μ
t and E

μ [·] as dBt and E[·], respectively, for ease of notation.

3.1 Rewriting the principal’s problem
In light of Proposition 1, we first rewrite the principal’s problem in Equation
(7). Proposition 1 establishes an important link between recommended effort
{μt } and incentives {βt } in any incentive-compatible contracts. Moreover,
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the principal can choose the optimal
{
β∗

t

}
to maximize her value, and the

corresponding optimal consumption process
{
c∗
t

}
and the optimal effort policy{

μ∗
t

}
are determined by Equations (21) and (19), respectively. Therefore, the

principal is as if choosing incentives {βt } only:

max{βt }
E

[∫ ∞

0
e−rt (dYt −ctdt)

]
, (27)

s.t. dYt =(μt +mt )dt +σdBt and dmt =φσdBt , (28)

ct =g(μt )− ln(−arvt )

a
, where g(μt )=

1

2
μ2

t , (29)

dvt =βt (−arvt )σdBt , given v0, (30)

μt =βt −pt . (31)

Here, Equation (28) describes the dynamics of output and posterior belief;
Equations (29)–(31) are derived from Equations (19)–(22) in Proposition 1;
and pt in Equation (31) is given by Equation (20).

Thanks to the CARA preference, the agent’s continuation value vt separates
from the problem and the optimal contracting problem can be rewritten without
vt . Start from the principal’s objective in Equation (27). In Appendix A.5, we
show that

E

[∫ ∞

0
e−rt (dYt −ctdt)

]

=E

[∫ ∞

0
e−rtμtdt

]
expected output

−
(

− ln(−arv0)

ar

)
C.E. of outside option v0

−E

[∫ ∞

0
e−rt

(
g(μt )

effort cost
+arσ 2β2

t /2
risk comp.

)
dt

]
, (32)

The discounted expected output is driven by the agent’s effort (recall that we
normalize the project’s initial profitability as m0 =0). The total compensation
cost is the certainty equivalent (i.e., −ln(−arv0)/(ar)) of delivering the agent’s
outside option v0, plus the monetary effort cost (i.e., g(μt )=μ2

t /2), and the
discounted risk compensation due to incentive provisions. Thus, the certainty
equivalent separates from the problem, and the optimal solution

{
β∗

t

}
will be

independent of the agent’s initial outside option v0. This result comes from the
lack of wealth effect under CARA preferences.

Combining Equations (31) and (32), the principal’s problem is simplified to

max{βt }
E

[∫ ∞

0
e−rt

(
μt − 1

2
μ2

t − 1

2
arσ 2β2

t

)
dt

]
(33)

s.t. μt =βt −pt with pt as given in (20).
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Importantly, only incentives {β}, but not continuation payoffs {v}, enter the
problem (pt depends on {β} only).

3.2 Recursive formulation
We now recursively formulate the principal’s problem in (33) and solve it by
dynamic programming. Let the continuation value in problem (33) be

V (p)≡Et

[∫ ∞

t

e−r(s−t)

(
μs − 1

2
μ2

s − 1

2
arσ 2β2

s

)
ds

]
. (34)

Consequently, the information rent pt serves as the only state variable for the
principal when designing the optimal contract. The information rent captures
the marginal benefit of the agent’s shirking due to the belief manipulation
effect. Recall the definition of the information rent in Equation (20), which,
together with the martingale representation theorem, implies that there exists
some progressively measurable process

{
σ

p
t

}
so that the dynamics of pt follows

(see Appendix A.6):

dpt =
[
(φ+r)pt +βt

(
arσσ

p
t −φ

)]
dt +σ

p
t dBt . (35)

From now on, we interpret
{
σ

p
t ,βt

}
as our control because the pair determines

the drift and diffusion of pt in (35). As we will derive σ
p
t and βt as a function of

the state variable pt , the control pair
{
σ

p
t ,βt

}
gives the full history of {βt : t ≥0}

that we are after.

Remark 1. Strictly speaking, the value function in Equation (34) is only a part
of the principal’s full value function. Following the same steps in Equation (32),
one can write the principal’s full value function J (mt,vt ,pt ), which depends
on project posterior mean mt , the agent’s continuation value vt , and the agent’s
information rent pt , as

J (mt,vt ,pt )≡Et

[∫ ∞

t

e−r(s−t) (dYs −csds)

]

=
mt

r
expected proj. value

+
ln(−arvt )

ar
C.E. of agent’s vt

+ V (pt )
value function

. (36)

The additive structure in Equation (1) gives rise to the first term, which captures
the expected project valuemt/r without effort; and the CARApreference allows
us to separate the agent’s certainty equivalent given his continuation value vt

(the second term) from the problem.16 Maximizing J (mt,vt ,pt ) is equivalent
to maximizing V (pt ). As a result, we refer to V (pt ) simply as the principal’s
value function wherever no confusion arises.

16 The certainty equivalent is the amount of money that an individual would view as equally desirable as a stream

of risky cash flows. Consuming ln(−arv)
a per period forever delivers a value of v for the CARA agent in our

model. For why this separation works, see Section 3.5.
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The optimal contract can now be fully characterized by an ordinary
differential equation (ODE), which is the Hamilton-Jacobi-Bellman (HJB)
equation for the problem (33):

rV (p)=max
β,σp

(β−p)− 1

2
(β−p)2 − arσ 2

2
β2 +Vp[(φ+r)p

+β (arσσp −φ)]+
1

2
Vpp (σp)2

. (37)

We will verify in Proposition 2 that 1+arσ 2 +a2r2σ 2
(
Vp

)2
/Vpp >0 and

Vpp <0. Then, the first-order optimality conditions for the optimal control{
σ

p∗
t ,β∗

t

}
are given by

β∗ =
1+p−φVp

1+arσ 2 +a2r2σ 2 (Vp)2

Vpp

and σp∗ =−arσβ∗ Vp

Vpp

. (38)

Plugging them back into the HJB Equation (37), we have

rV (p)=
1

2

(
1+p−φVp (p)

)2

1+arσ 2 +a2r2σ 2 [Vp(p)]2

Vpp(p)

−p− 1

2
p2 +(φ+r)p ·Vp (p). (39)

We solve the problem in (37) by analyzing the above ODE in (39).

3.3 Optimal contracting
Before we start analyzing the optimal contract, we first consider a (trivial)
benchmark case. Suppose that the profitability θt is observable. This is
essentially the classic Holmstrom and Milgrom (1987) model, except that the
optimal contract always benchmarks the agent’s performance to θt . Using the
incentive constraint μt =βt , the optimal solution is

μHM
t =βHM

t =
1

1+arσ 2
, (40)

and the principal’s value is V HM =1/
(
2r
(
1+arσ 2

))
. The optimal contract

can be implemented by a constant equity share 1/
(
1+arσ 2

)
(with proper

benchmarking). What is more, the value V HM serves as an upper bound for
our value function V (p) when profitability is unobservable:

V (p)≤V HM =
1

2r
(
1+arσ 2

) . (41)

This is because V HM will be the principal’s value in our model but after
seeing the additional (precise) information about θt (and she can dispose this
information freely).

To solve for the optimal contract, we analyze the ODE (39) with the
boundary condition in Equation (A13) using the technique of dynamic
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programming. The following proposition is our main result, which characterizes
the properties of the value function, and hence the optimal policy {β∗,σ p,∗} like
in Equation (38). We impose the following parametric condition throughout the
paper, which restricts φ to be relatively small:

(r +φ)3

φ
<

r2

2a

(
1+arσ 2

)
. (42)

The sole purpose of this condition is to ensure the concavity of V (p) in the
proof method we employ.17

Proposition 2. Property of value function of optimal contracting. Suppose
that Equation (42) holds. We have the following properties for V (p)∈C

2 which
characterize the optimal contract.

1. V (0)=0 and Vp (0)=1/φ.

2. V (p) is strictly concave over a compact interval, and 1+arσ 2 +

a2r2σ 2 (Vp)2

Vpp
>0.

3. There exists a unique p∈(0,pd
)

such that Vp (p)=0, where the constant

pd ≡ 2φ

(2φ+r)arσ 2 +r +
√

(2φ+r)2a2r2σ 4 +2arσ 2
[
(φ+r)2 +φ2

]
+r2

>0.

(43)
Under the optimal policy, p is an upper entrance-no-exit boundary, and
0 is a lower absorbing boundary 0 with V (0)=0. This implies that under
the optimal policy the endogenous state variable p∗

t never exits the
interval [0,p].

In the optimal contract, the principal sets the initial information rent p∗
0 to

be p. Afterwards, the state variable p∗
t evolves according to Equation (35), and

the optimal control is characterized by Equation (38). Interestingly, property 3
in Proposition 2 states that the information rent p∗

t will never wander out of an
endogenous interval [0,p], which suggests that it is suboptimal to promise too
much future incentives (recall information rent p∗

t is the discounted promised
future incentives). This result is related to Holmstrom and Milgrom (1987)

in which the optimal incentives
{
βHM

t = 1
1+arσ 2

}
remain constant over time.

In our model with learning, the optimal incentives
{
β∗

t

}
become stochastic,

but the information rent
{
p∗

t

}
and hence incentives

{
β∗

t

}
remain endogenously

bounded due to stationary model primitives (CARA-normal setting, additive
technology in Equation (28), stationary learning, and the effort cost becomes
prohibitive for unbounded μ).

17 We require this condition for our particular proof for the concavity of the value function V (p). When condition
(42) fails, other proof methods might exist to show the concavity of V (p).
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Remark 2. Though we are able to theoretically analyze the ODE (39) in
Proposition 2, numerically solving (39) and then investigating the properties of
optimal contracting are far from easy tasks. This is because the ODE in (39) has
two singular points at both p=0 and p=p: the coefficient in front of the second-
order derivative becomes zero at both end points (i.e., σp (0)=σp (p)=0), and
as a result the ODE collapses to one of the first order. In addition, the singular
point p is a free boundary itself that we need to pin down. We are able to develop
a numerical algorithm to solve the ODE based on the approach of numerical
integration with a desirable degree of accuracy and numerical stability. The
InternetAppendix provides the details about the algorithm, as well as the Matlab
programs.18

3.4 Validity of the first-order approach
In deriving the optimal contract in Proposition 2, we rely on the agent’s incentive
compatibility constraint (19), which is the agent’s first-order condition in his
effort decision. This is the so-called “first-order approach”, and in the dynamic
agency literature it is challenging to show that the necessary local first-order
condition for the agent’s problem is indeed sufficient for the agent’s global
optimality.

We have shown that in the optimal contract, the optimal policy
{
β∗

t ,σ
p∗
t

}
are bounded. In this section, we show that we are able to guarantee the validity
of the first-order approach, after imposing certain sufficient conditions on
the volatility of information rent pt , that is, σ

p∗
t , in the optimal contract.

More specifically, we show that the first-order conditions in Proposition 1 are
sufficient to ensure the agent’s global optimality by following an upper-bound
approach employed in Sannikov (2014).

Proposition 3. Validity of the first-order approach. Suppose that in the
optimal contract

∣∣σp,∗
t

∣∣ is not too large, so that either (A22) or (A23) in the
proof in Appendix A.8 holds. Then under the usual transversality condition,
given the optimal contract the policy in Proposition 1 solves the agent’s problem
in (6).

To illustrate the basic idea, suppose that the agent facing the employment
contract has deviated in the past, by having saved a bit and/or shirked a
bit. For private savings, the agent’s deviation state is his saving balance
St =

∫ t

0 er(t−s) (cs − ĉs)ds; while for shirking that distorts the principal’s current
and future beliefs, the relevant deviation state is the belief distortion �t =
φ
∫ t

0 eφ(s−t) (μs −μ̂s)ds. Given these two deviation states, we define a function

18 As an alternative approach, we have also conducted an asymptotical analysis that is tractable but may lead to
inaccurate approximation results when the agent is not sufficiently risk tolerant. The Internet Appendix provides
the details about the asymptotical analysis.
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W (vt ,pt ;St ,�t ) which is constructed to be the upper bound of the agent’s
deviation value given the optimal contract and these two deviation states:

W

⎛⎜⎝ vt ,pt︸ ︷︷ ︸
eqbm contract

; St ,�t︸ ︷︷ ︸
dev. states

⎞⎟⎠≡ vt︸︷︷︸
eqbm cont. payoff

· exp(−arSt )︸ ︷︷ ︸
dev. value from savings

·exp

(
−ar

(
1

φ
�tpt +0.5k�2

t

))
︸ ︷︷ ︸

dev. value from belief distortions

. (44)

In (44), two deviation states–private savings St and belief manipulation �t–
enter the proposed upper bound of the agent’s deviation value in a multiplicative
way, capturing the potential interdependence between the agent’s deviating
incentives of consumption and effort.

The functional form of W (vt ,pt ;St ,�t ) is intuitive. When the agent never
deviates, that is, St =�t =0, then W (vt ,pt ;St ,�t )=vt is the agent’s equilibrium
continuation payoff achieved by the equilibrium strategy satisfying the first-
order conditions. The second term exp(−arSt ) in (44) is the extra value
that the agent gains by having a private saving of S and hence always
consuming rS extra in all future states. The third term is about the gain
from belief distortion due to past effort deviations. We know that the first-
order gain from belief manipulation is the information rent pt , which explains
the linear coefficient pt/φ in front of the belief distortion �t inside the
parentheses. The quadratic coefficient k is an appropriately chosen constant
(see the proof of Proposition 3 in Appendix A.8) to ensure W (vt ,pt ;St ,�t )
being the upper bound of the agent’s deviation value, given his current
deviation state-pair (St ,�t ).19 Because this upper bound satisfies the property
of W (v0,p0 =p;S0 =0,�0 =0)=v0, the strategy satisfying first-order conditions
achieves this upper bound, and hence is indeed optimal for the agent who is
endowed with zero savings and zero belief distortion.

The proof of Proposition 3 goes through if the volatility of information
rent σ

p∗
t in the optimal contract is not excessively high. For instance, in the

proof in Appendix A.8, one sufficient condition (A23) requires that (σp
t )2 ≤

σ 2φ2
(
r +2φ−φ2

)
, and (A22) is a bit weaker; both conditions are easily

satisfied in our numerical examples. A similar condition for the volatility of
the endogenous state is required in Sannikov (2014). Intuitively, all else equal,
the agent’s global deviation value tends to be increasing in the volatility σ

p∗
t

of the state, because the agent has the “option” to adjust his optimal strategy
swiftly following a sequence of deviations and performance shocks.

19 It is worth noting that W (vt ,pt ;St ,�t ) is not exactly the deviation value of the agent; it just provides an upper
bound for the agent’s deviation value. This result is established by showing that the auxiliary gain process∫ t

0 e−rsu (̂cs ,μ̂s )ds+e−rtW (vt ,pt ;St ,�t ) follows a supermartingale for any feasible policy {̂ct ,μ̂t }. For more
details, see the proof for Proposition 3 in Appendix A.8.
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3.5 Discussion of assumptions
We make two simplifying assumptions in this paper: one is the assumption of
CARAutility function and the other is private savings. We now discuss the roles
played by these two assumptions in making the model tractable. In short, CARA
preference without wealth effect is the key to reducing the dimensionality into
a unidimensional problem; while private savings, under CARA preferences,
helps simplify the solution greatly. As will be discussed in the Concluding
Remarks, both assumptions are not responsible for our key qualitative results.

3.5.1 First-order approach and state variables. We first briefly outline the
general first-order approach that is widely used in the literature in solving this
class of problems. For any general utility function u(c,μ), following the same
steps in Section 2.4.1, we can derive the first-order incentive-compatibility
condition for the (interior) optimal effort policy as

−uμ (ct ,μt )= β̃t −p̃t , (45)

where β̃t the diffusion term, expressed in utilities, in the process of continuation
value vt (see Equation (10)):

β̃t ≡ (−arvt )·βt ; (46)

and p̃t the information rent that captures the additional value of shirking due
to belief manipulation:

p̃t ≡Et

[∫ ∞

t

φe−(r+φ)(s−t)β̃sds

]
. (47)

In the case of private savings, there is an additional incentive constraint for the
agent’s optimal consumption policy, as the agent can privately save:

uc (ct ,μt )= q̃t , (48)

where q̃t is a new state variable capturing the marginal value of private savings
(or consumption).

There are two major obstacles in solving the general problem using the first-
order approach outlined above. The first issue is dimensionality: In general,
besides mt which captures the project’s quality, the principal’s value function
depends on the state variables vt and p̃t , and also q̃t if private savings are
further allowed. Given the additive cash-flow technology in (1), mt enters
the principal’s value additively with mt/r , and we will focus on the function
J̃ (vt ,p̃t ,q̃t ) from now on.

Oftentimes, the solution J̃ can only be obtained by numerical methods. This
leads to the second—and more important—concern: This first-order approach
might not be valid. In other words, numerical solutions typically make it
harder to rigorously verify that, facing the proposed optimal contract, the agent
cannot have strictly profitable (global) deviations. In contrast, in our model,
the combination of the CARA preference and private savings allows us to give
a full characterization of the solution and to further verify the validity of the
first-order approach in Section 3.4.
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3.5.2 CARA preferences. For CARA preferences, the state variable, vt

(i.e., the agent’s continuation payoff) always separates out from the problem,
regardless whether we allow for private savings or not. More specifically,
when the agent has CARA preferences, the principal’s value function is in the
form of

J̃ (vt ,p̃t ,q̃t )= J̃ (−1,p̃t ,q̃t )+
ln(−vt )

ar
.20 (49)

The intuition is as follows. Since u(ct +δc,μt )=e−aδcu(ct ,μt ), shifting the
CARA agent’s consumption by a constant δc in all states multiplies the agent’s
utility by the same factor e−aδc under both the recommended strategy and all
deviations. As a result, shifting consumption by δc =− ln(−v)

a
, which shifts the

agent’s continuation payoff multiplicatively by a factor of −v>0, does not
change the incentive compatibility of the contract. Applying this argument
to the optimal contract, (20) simply says that the principal is as if facing an
agent with a normalized continuation value of −1, but then shifting the agent’s
consumption all the states by − ln(−v)

a
at the cost of −ln(−v)

ar
in present value.

This argument holds regardless whether the no-saving constraint is present
or not.

For general utility functions, we typically need to solve a partial differential
equation (PDE) with v being one of the state variables. For simplicity, suppose
that the agent cannot privately save, so that the principal’s value function
can be written as J̃ (vt ,p̃t ). Standard argument implies that J̃ (·,·) satisfies the
following PDE:

rJ̃ (v,p̃)=max
c,β̃,γ̃

μ
(
c;β̃,p̃

)−c+ J̃v

(
rv−u

(
c,μ

(
c,β̃;p̃)))

+ J̃p̃

(
(r +φ)p̃−φβ̃

)
+

σ 2

2

[
J̃vvβ̃

2 + J̃ 2
p̃p̃ γ̃ 2 +2J̃vp̃β̃γ̃

]
. (50)

Given the optimal consumption c∗, μ
(
c∗;β̃,p̃

)
denotes the agent’s optimal

effort satisfying the first-order condition −uμ

(
c∗,μ

(
c∗;β̃,p̃

))
= β̃−p̃ in

Equation (45), and γ̃ is the diffusion term associated with p̃. Solving (50)
is a daunting task in general.21

3.5.3 What if the agent cannot privately save?. We have also assumed that
the agent can privately save to smooth his consumption over his life time.
Although for general utility functions allowing for private savings demands
another state variableqt , for CARApreferences it does not. To see this, Lemma 2
and Equation (13) imply that q̃t =−arvt always, rendering q̃t to be redundant

20 The certainty equivalent term ln(−arvt )
ar in (36) differs from ln(−vt )

ar by a constant ln(ar)
ar which is absorbed in

J̃ (−1,p̃t ,q̃t ).

21 For papers studying dynamic contracting problems with private savings in which the agent has non-CARA
preferences, see Kocherlakota (2004), He (2012), and, more recently, Di Tella and Sannikov (2016).
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given vt . The intuition is simple: Private savings imply that the marginal value
of saving equals the marginal value of consumption, which is proportional to
the level of utility under the CARA utility.

As a result, under CARA preferences, we only need to keep track of the
agent’s information rent as the single state variable, whether or not private
savings are allowed. This paper fully solves the case with private savings, and
Appendix A.9 outlines the derivations for the case without private savings.
There, we show that similar to the private saving case, the key state variable
for the optimal contract is again (recall (46) and (47)) pt = p̃t /(−arvt ), and we
derive the ODE for the principal’s value function V ns (p).

We emphasize that allowing for private savings under CARA preferences
greatly simplifies our problem, which facilitates our rigorous characterization of
the optimal contract in Proposition 2 and hence the verification of the first-order
approach in Proposition 3. We illustrate this point by comparing the agent’s
key incentive compatibility condition for the setting with private savings to
that without. Under both settings, the agent’s incentive compatibility condition
is −uμ (ct ,μt )= β̃t −p̃t in (45), which, after rewriting in terms of β and p, is

arvt (βt −pt )=uμ (ct ,μt )
CARA

= aμt ·ut ⇒μt =(βt −pt )· rvt

ut

.

Here, we use the property of CARA utility in the second equation. With
private savings, the agent’s consumption smoothing implies ut = rvt as in (11),
rendering the simple and intuitive Incentive-Compatibility condition

μt =βt −pt . (51)

In contrast, when the agent cannot smooth his consumption, the principal
optimally chosen the agent’s current consumption ct to control the ratio between
the agent’s instantaneous utility ut and his continuation payoff vt , and as shown
in Appendix A.9, the resultant optimal effort in the optimal contract satisfies

μt

(
1+aμ2

t −aμt

)
=
(
1−arpt ·V ns

p (pt )
)
(βt −pt ).

Comparing to (51), this is a cubic equation in μt , with right-hand-side involving
the first-order derivative of the value function V ns

p (p).22 What is more, the final
ODE (A30) for V ns (p) derived in Appendix A.9 seems dauntingly complicated
for rigorous analytical analysis on its key properties like in Proposition 2, and
we await future research to make progress on this front.

4. Model Implications

To better understand our results, we first analyze the case in which we restrict
the incentives {βt } to be deterministic. We then turn to the general case in

22 When the principal chooses the agent’s effort μt (while fixing the agent’s consumption ct ), this choice affects
the agent’s instantaneous utility ut (ct ,μt ) and hence the drift of vt , that is, ut −rvt like in (10). Because the
drift of vt enters the drift of pt = p̃t /(−arvt ), the principal takes into account the first-order impact V ns

p (pt ) in
choosing μt . In contrast, when the agent can control his own consumption, ut −rvt =0 always holds thanks to
consumption smoothing by the agent.
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which the optimal policies are stochastic and compare it to both the Holmstrom
and Milgrom (1987) benchmark and the contract with optimal deterministic
incentives. The discussion focuses on two qualitative features of optimal
contracting: front-loaded incentives and option-like incentives.

4.1 Contract with deterministic incentives
We will show that the optimal incentives are front-loaded (or, time decreasing)
in dynamic contracting with learning. This result is best illustrated when we
constrain the incentives {β} to be deterministic (but can vary over time), a case
in which we can analytically derive the time-decreasing incentives. This case
also provides an important benchmark for the fully stochastic optimal contract,
because deterministic contracts do rule out the option-like feature (i.e., raising
incentives following good performance).

The reason that {β} being deterministic helps is that we can move the
conditional expectation in Equation (20) inside the integral,23 so that the
information rent pt =φ

∫∞
t

e−(φ+r)(s−t)βsds is a deterministic process with
σp =0. V d (p) denotes the value function with deterministic policies, where
the superscript “d” stands for “deterministic.” Plugging σp =0 into (37), we
have βd (p)=

(
1+p−φV d

p

)
/
(
1+arσ 2

)
, with the resultant HJB equation as:

rV d (p)=
1

2

(
1+p−φV d

p (p)
)2

1+arσ 2
−p− 1

2
p2 +V d

p (p)(φ+r)p.

The following proposition solves the above ODE in closed form.

Proposition 4. Optimal deterministic contracts. Within the class of
deterministic contracts, the value function V d (p) is quadratic

V d (p)=−1

2
Adp2 +Bdp. (52)

The evolution of information rent, incentive, and effort are given by:

pd
t =

Bd

Ad
e−λt ,βd

t =
1+Adφ

1+arσ 2
pd

t , and μd
t =βd

t −pd
t =

Adφ−arσ 2

1+arσ 2
pd

t . (53)

where λ≡−φ−r + 1+Adφ

1+arσ 2 φ>0, Bd ≡1/φ and

Ad ≡
(2φ+r)arσ 2 +r +

√
(2φ+r)2a2r2σ 4 +2arσ 2

[
(φ+r)2 +φ2

]
+r2

2φ2
. (54)

Note that pd in Equation (43) equals pd
0 , which maximizes the time-0

principal’s value under deterministic contracts.

23 This is because of the property of exponential martingale (recall {β} being bounded):

Et

[
exp

(
−arσ

∫ s
t βudBu − (arσ )2

2
∫ s
t β2

udu

)]
=1.
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The above proposition shows that in the optimal deterministic contract, the
information rent pd

t , the incentive βd
t , and the optimal effort μd

t all follow
certain exponentially decaying paths (toward zero). Moreover, at t =0, from
Equation (53), we have

μd
0 =

Adφ−arσ 2

1+arσ 2
pd

0 =
1−arσ 2pd

0

1+arσ 2
<

1

1+arσ 2
=μHM

0 .

Thus, the entire optimal effort path is below the Holmstrom and Milgrom (1987)
benchmark.

The optimality of the front-loaded effort policies comes from the forward-
looking nature of information rent. From the agent’s incentive-compatibility
condition in Equation (19), the belief manipulation effect implies that giving
incentives later tends to make the agent shirk earlier, but not the other way
around. This implies that later incentives are more costly than early ones, and,
consequently, the optimal contract implements higher effort in earlier periods.
Clearly, this result relies on the commitment ability in long-term contracting.
Indeed, in Section 4.4 we show that equilibrium incentives and effort policies
are constant over time when relationships are short term.

Both Prat and Jovanovic (2014) and our model find front-loaded incentives
to be optimal. Because Prat and Jovanovic (2014) implements a constant effort,
the forward-looking nature of information rent implies that the compensation
contract has to offer front-loaded incentives.24 Our model allows the optimal
contract to adjust on the effort margin (not just incentives), and cheaper
incentive provisions in earlier periods naturally push the optimal contract to
implement a front-loaded effort profile.

The front-loaded effort policies also arise in models with career concerns
(e.g., Gibbons and Murphy 1992; Holmstrom 1999), but through a distinct
mechanism. There, agents in their early careers face higher uncertainty in their
abilities, and thus work harder to impress the market (but the market will not
be fooled in equilibrium, a standard signal-jamming problem). This force is not
present in our stationary model, as the uncertainty of the profitability/ability
(i.e., the posterior variance of θt ) stays constant over time.

4.2 Value function and optimal policies
Now we return to the contracting space of fully stochastic incentives, and
illustrate two qualitative properties of our optimal contract. First, similar
to the case of deterministic contracts studied in Section 4.1, the fully
stochastic optimal contract features front-loaded incentives. Second, the

24 Both DeMarzo and Sannikov (2017) and Prat and Jovanovic (2014) assume that the effort cost is linear over
the feasible interval [0,1] and focus on implementing the highest effort level 1. In addition, Prat and Jovanovic
(2014) study the nonstationary case in which the underlying profitability θ (as a parameter) never changes, and
as time passes, both parties eventually learn the true profitability. In the Internet Appendix, we show that the
pattern of time-decreasing effort pattern is robust to this assumption.
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Figure 2
Value function and optimal policies in the optimal contract. Solid lines correspond to the optimal stochastic
contract, and dashed lines correspond to the optimal deterministic contract. The parameters are r =0.5,a =1,σ =8,

and φ =0.5. The Holmstrom-Milgrom (1987) benchmark has V HM = 1

2r
(

1+arσ2
) =0.03 and βHM =μHM =

1
1+arσ2 =0.03 under the parameter specification.

optimal management of the agent’s information rent leads to an option-like
feature in the optimal contract, that is, incentives rise after good performance.
As explained, this option-like feature is explicitly ruled out in deterministic
contracts.

4.2.1 How does the optimal stochastic contract help?. From now on we
always refer to optimal policies, and without risk of confusion we omit the
superscript asterisk. Figure 2 plots the value function V (p), the optimal
control {β (p),σ p (p)}, and the associated optimal policy μt (p)=βt (p)−p

in solid lines. For comparison, in each panel we also plot the corresponding
deterministic counterparts in dashed lines, and the Holmstrom and Milgrom
(1987) benchmark in dotted lines.

The value delivered by the optimal stochastic contract must exceed the one
under the deterministic counterpart, as shown in panel A in Figure 2. Panel B
plots the volatility of the agent’s information rent, σp, which is zero when the
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contract is restricted to be deterministic. A positive σp in the optimal stochastic
contract implies that the information rent rises after good performance shocks,
an interesting property which will be discussed shortly.

What drives the stochastic contract to be superior to the deterministic one?
It is because the stochastic contract implements a more efficient effort policy,
closer to the higher Holmstrom and Milgrom (1987) effort benchmark. Panel C
shows that incentives β (p) sit above the deterministic counterparts for almost
the entire range (and, thus, gets closer to the Holmstrom and Milgrom 1987
benchmark level), except for low p’s, which are close to zero. A similar pattern
holds for the implemented effort μ(p)=β (p)−p in panel D of Figure 2.

Interestingly, though not evident in Figure 2, when p is close to zero both
the incentive β (p) and effort μ(p) lie below their deterministic counterparts.
This result is a robust feature of the model. Indeed, with the aid of asymptotic
analysis (see Proposition B.1 in the companion Internet Appendix), one can
analytically verify that the difference between the deterministic and stochastic
contracts is negative by setting p�0. The seemingly counterintuitive result is
rooted in the “option-like” feature in the optimal contract, to which we turn
next.

4.2.2 Option-like incentives. In our model it is optimal to implement a
history-dependent effort policy. This is surprising: As the posterior variance
only changes over time deterministically in a standard CARA-normal setting
with learning (in our stationary setting, the posterior variance is a constant in
particular), usually the resultant equilibrium effort profile is a deterministic
process as well (e.g., Holmstrom 1999).

To understand the economic mechanism that drives this result, we study how
history-dependent effort policies improve over deterministic policies. To this
end, we investigate the response of incentive β (or, effort μ) to unexpected
shocks. This is captured by the diffusion term of dβ (pt ) (or, dμ(pt )), that
is, β ′ (pt )σpdBt (or (β ′ (pt )−1)σpdBt ), and, as shown in the top panels in
Figure 3, these diffusion terms are positive. There, we also plot the drift and
diffusion for the key state variable pt , that is, information rent. This interesting
result implies that incentive (or, effort) rises following good performance,
suggesting that the optimal contract is “convex” in output. In conclusion, in
contrast to the Holmstrom and Milgrom (1987) benchmark where the optimal
contract features a constant equity share, with learning the optimal contract has
an option-like feature.

The optimality of this option-like feature is a result of reducing the agent’s
information rent in a long-term relation. As explained in Section 2.4, the thrust
of endogenous learning in dynamic contracting is that the agent can (marginally)
manipulate the principal’s future belief downward by shirking today, and thus
enjoy the potential information rent:

pt =
1

uc (ct ,μt )
Et

[∫ ∞

t

φe−(φ+r)(s−t)βsuc (cs,μs)ds

]
.
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Figure 3
Diffusion and drift for incentives βt , effort μt , and information rent pt in the optimal contract. Solid lines
correspond to the optimal stochastic contract, and dotted lines correspond to the optimal deterministic contract.
The parameters are r =0.5,a =1,σ =8, and φ =0.5.

The information rent captures the agent’s additional future rewards when
the principal mistakenly attributes the higher-profitability-driven good
performance to the agent’s effort, and this is why future incentives {βs} matter.
Equally important, for a risk-averse agent, the amount of information rent
also depends on his marginal utilities uc (cs,μs) when receiving manipulation
benefits in those future states.

Because future incentives βs and future marginal utilities uc (cs,μs) enter
the information rent pt multiplicatively, a negative correlation between βs

and uc (cs,μs) lowers pt today. Intuitively, information rent can be reduced
if the contract allocates greater belief manipulation benefits in states where the
agent cares less. Interestingly, the option-like feature achieves this negative
correlation. To see this, following a positive output shock, the agent becomes
wealthier, implying a lower marginal utility uc (cs,μs)=−arvs .25 By making
the optimal contract option-like, the principal raises incentives after good
performance and thus imposes a negative correlation between incentives and
the agent’s marginal utility.

The option-like feature explains the intriguing result that the agent works
less in the optimal stochastic contract than the deterministic one when p

is close to zero, as discussed toward the end of Section 4.2.1. A positive
diffusion of incentive β (effort μ) implies that the optimal contract allocates
lower incentives in states with poor historical performance (and hence a high
marginal utility). Because the information rent p is positively correlated with

25 Formally, we have the evolution of marginal utility as d (−arvt )=−arβt (−arvt )dBt , which has a negative
diffusion coefficient in front of the performance shock dBt .
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Figure 4
Simulated paths of effort policies in optimal contract. We simulate the model under the baseline parameter
specification: r =0.5,a =1,σ =8,φ =0.5 for 10,000 rounds. In each round, we simulate a path of 250 months of
equilibrium efforts starting at the initial optimal value p.

performance as indicated by panel B in Figure 2, the stochastic optimal contract
implements lower incentives in states with p�0.

4.3 Time-dcreasing effort policies
We have shown analytically in Section 4.1 that, because of forward-looking
information rent, the effort policy is decreasing over time in the optimal
deterministic contract. Not surprisingly, this pattern persists in the fully
stochastic optimal contract. Graphically, the front-loaded effort policy is
reflected by the negative drifts of incentives β and effort μ in the bottom
panels in Figure 2.

The feature of declining effort under the optimal contract is further confirmed
by Monte Carlo simulations. Specifically, we simulate the model under the
baseline parameter specification for 10,000 rounds. In each round we simulate
an equilibrium path of 250 months starting at the initial optimal state p.
As shown in panel A, effort policies in all simulated paths tend to decrease
over time. The average equilibrium effort decreases to close to zero after 100
months (panel B). One interesting observation is that although the average
effort monotonically decreases over time, its volatility increases initially, and
then subsequently decreases (panel C). This is because the diffusion of pt equals
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Figure 5
Comparative statics with respect to the uncertainty parameter φ. Solid lines correspond to the optimal stochastic
contract under the parameter specification: r =0.5, a =1, σ =8, and φ =0.5. The dotted lines correspond to the
optimal stochastic contract under the same parameter specification, except φ =0.75.

zero at both boundaries 0 and p, and achieves its maximum at an intermediate
value in between.

4.3.1 Comparative statics on uncertainty. We study comparative static
results with respect to the uncertainty parameter φ. Economically, φ measures
the degree of informational uncertainty relative to cash flow risk in the model,
which highlights our contribution to the literature (φ =0 corresponds to the
classic Holmstrom and Milgrom model).26 Figure 5 plots the equilibrium
outcomes under the baseline parameter specification φ =0.5 (the solid line)
as well as the one with φ =0.75 (the dashed line), while keeping other
parameters unchanged. A higher informational uncertainty can be considered
as the situation with more severe agency conflicts, since all else being equal the
agent enjoys greater information rents. This explains that, as a result of raising
φ =0.5 to φ =0.75, the principal has a lower value function (panelA, lower V (·))
and the agent works less (panel B, lower μ). To mitigate the agent’s excessive

26 Recall that φ =�θ
0 /σ2 where �θ

0 is the prior uncertainty of θ and σ2 is the volatility of cash flows.
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information rents and curb his rent-seeking behavior, the optimal contract sets
lower incentives (panel C, lower β) and becomes more option-like (panel D,
higher σp).

4.4 Short-term contractual relationship
We want to emphasize that the two foregoing features, that is, front-loaded and
option-like incentives, are due to the interaction between long-term contracting
and learning. The case of observable θt shuts down learning, and, like in
Holmstrom and Milgrom (1987), the optimal effort and incentives are constant
over time. What if learning is present, but short-term (say, due to lack of
commitment) contractual relationships are required?

Imagine the following setting with short-term contracting, in which a long-
lived agent with unknown ability θt is working for a continuum of principals.
At any time t >0, there is one principal who signs a short-term incentive
contract with the agent. The relationship, however, only lasts for the interval
[t,t +dt]. The short-term contract consists of a fixed wage αt , an incentive βt ,
and the recommended effort μt , so that given date t belief Et [θt ]=mt the agent
receives a compensation flow of

αtdt +βt (dYt −μtdt −mtdt)

at the end of period t +dt . Afterwards, the relationship breaks and the
agent signs another contract {αt+dt ,βt+dt } with another principal indexed by
t +dt . Importantly, short-term relationships rule out inter-period commitment,
implying each principal takes other principals’ equilibrium offers as given.

For simplicity, to determine the history of fixed wages {αt }, we assign all the
bargaining power to principals (as we have assumed in Section 1.1). We have
the following proposition:

Proposition 5. Short-term relationships. Suppose that contractual relation-
ships are short-term and principals have all the bargaining power. Then the
equilibrium incentive βST

t is constant over time:

βST
t =

φ+r

r +arσ 2 (φ+r)
for all t,

and the equilibrium effort μST
t is constant over time as well

μST
t =

r

φ+r
βST

t =
r

r +arσ 2 (φ+r)
for all t.

When the principals have all the bargaining power, Proposition 1 still
applies to the agent’s problem.27 Thus, given today’s incentive βST

t and future

27 When the agent does not have any bargaining power, the proof in Proposition 5 shows that for the agent’s problem,

the short-term incentives
{
βST
t

}
here play the same role as the incentives {βt } in long-term contracts analyzed

in Proposition 1.
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incentives
{
βST

t+s :s >0
}
, the agent exerts μST

t =βST
t −pST

t , where pST
t , the

properly discounted future incentives
{
βST

t+s :s >0
}
, is defined analogously like

in Equation (20). The time-t principal takes pST
t as given and maximizes the

expected output βST
t −pST

t +mt , minus the total compensation which is the sum

of the effort cost
(
βST

t −pST
t

)2
/2 and the risk compensation 1

2arσ 2
(
βST

t

)2
.

Ignoring the given project quality mt , the time-t principal maximizes the flow
payoff in Equation (33) only:

max
βST
t

(
βST

t −pST
t

)− 1

2

(
βST

t −pST
t

)2 − arσ 2

2

(
βST

t

)2 ⇒βST
t =

1+pST
t

1+arσ 2
. (55)

Stationarity implies that both βST
t and pST

t are constants, and the result in
Proposition 5 follows.

Intuitively, without commitment, in short-term contracting each principal at
different points of time solves her individual myopic optimization problem in
(55). In contrast, with long-term contracting, a long-lived single principal not
only maximizes the flow payoff in (55) but also takes into account the effect
of βt+s on the forward-looking information rent pt .28 This forward-looking
force in the full commitment environment, combined with learning, makes the
optimal effort policy time decreasing and stochastic.

4.5 Empirical implications
4.5.1 Labor and CEO compensation. Our model has a few key empirical
implications. First, the optimal long-term contract with learning implements
front-loaded effort policies. This is consistent with the findings in Medoff and
Abraham (1981), who measure the productivity of different age groups and
find that young people are more productive, controlling for job categories.
Their findings support the prediction that young workers supply more labor if
workers in the same job category have roughly similar abilities.

Our model suggests that it is more efficient to assign higher incentives
after good performance, because the agent has a lower marginal utility at that
time (and hence less information rent). This option-like feature of the optimal
contract lends support to the pervasive use of option-based compensation in
practice (e.g., Hall and Liebman 1998). There is further empirical support for
this prediction: Core and Guay (1999) find that the annual grant of options and
stocks to a CEO is increasing in past stock returns, and Bergman and Jenter
(2006) document that option and stock grants per manager are increasing in past

28 This result is in contrast to that of Fudenberg, Holmstrom, and Milgrom (1990), whose model does not contain
learning. They show that, with dynamic moral hazard only, the optimal long-term contract can be implemented by
short-term ones under CARA preferences. In a way, their result suggests that commitment itself–when learning
is absent–is not that important. In contrast, our model shows that the commitment in long-term contracting is
important because of the long-lasting belief manipulation effect with endogenous learning.
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stock returns. More recently, He et al. (2014) find that managerial incentives
increase with past firm-level profitability.29

Pushing this point a bit further, our model also implies that managerial
incentives should be procyclical at the aggregate level. The idea is simple:
Although aggregate economic conditions should be indexed out in the optimal
contract, the fact that the agent tends to have a marginal utility in good times
implies that it is relatively cheaper to assign incentives there. This prediction
is consistent with the empirical finding in Eisfeldt and Rampini (2008), who
show that the Hodrick-Prescott-filtered executive compensation is remarkably
procyclical.

Last, as suggested by the comparative static result in panel D in Figure 5,
industries or firms with higher uncertainty should have more option-based
contracts for managerial compensation. There is no doubt that, compared to
traditional industries, new-economy firms (such as computer, software, the
Internet, or telecommunication companies) tend to be associated with higher
uncertainty. Consistent with our model predictions, both Ittner, Lambert, and
Larcker (2003) and Murphy (2003) find that new-economy firms indeed grant
more stock options to their managers.

There is one caveat in linking our optimal contracting results to compensation
contracts in practice. As emphasized, we focus on long-term contracting
with full commitment, which is theoretically appealing because it gives
the upper bound of other long-term relations with partial commitment. In
practice, without full commitment career concerns (Gibbons and Murphy 1992;
Holmstrom 1999) are another theoretically important and empirically relevant
force, especially when the labor market is mobile and agents/workers can easily
move.30 Therefore, our model applies more to the situation where human capital
is more firm specific, and thus long-term job security is a primary concern.

4.5.2 Incentive contracts in asset management. Our analysis also sheds
light on the difference between compensation contracts observed in the hedge
fund and mutual fund industries. Hedge funds tend to compensate their
managers based on long-term “explicit incentives,” and the option feature
is embedded in the widely used “2-20” and high-water-mark contracts. That
hedge fund contracts exhibit option-like features may well be related to learning
about the manager’s persistent unobservable ability in asset trading. In contrast,

29 He et al. (2014) emphasize the different roles of uncertainty and risk in shaping optimal executive compensation,
which potentially helps distinguish our uncertainty-based mechanism from the leading explanation that the
purpose of option-based compensation is to provide CEOs with incentives for taking risk (e.g., Stulz and Smith
1985).

30 Although both Gibbons and Murphy (1992) and our paper feature an optimal front-loaded effort policy, the
predictions regarding optimal incentive profiles are different. Due to career concerns, in Gibbons and Murphy
(1992) the agent works hard even without high-powered in-job incentives. In contrast, all incentives in our model
are from the long-term contract, and the front-loaded effort profile requires a front-loaded incentive contract.
This is a common feature in a dynamic contracting model with full commitment and learning, such as in Prat
and Jovanovic (2014) and DeMarzo and Sannikov (2017).
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mutual fund managers are often compensated by “implicit incentives,” which
are management fees proportional to assets under management. This is in
line with the result that linear compensation remains optimal for short-term
contracting, a case analyzed in Section 4.4 in which both parties cannot commit
to a long-term relationship.31 The difference between these two industries
seems to be consistent with the casual observation that, compared with the
hedge fund industry, there is greater job mobility in the mutual fund industry
because the human capital of mutual fund managers is more fungible across
different funds.32

Within the hedge fund industry, some interesting empirical predictions can
be made based on our main theoretical findings that (a) relative to shorter-term
contracting, the agent in a longer-term contracting relationship shirks more for
the purpose of information rent extraction (Equation (19) in Proposition 1),
and (b) to mitigate such motives, incentives tend to increase following good
performance. The former finding (a) predicts that hedge fund managers in a
longer-term contracting relationship (e.g., a longer lock-in period) tend to work
less, all else being equal (e.g., fixing incentives). Translating to observable
measures, our model predicts that hedge fund managers with a longer-term
contracting relationship tend to be associated with worse fund returns, all
else being equal. The latter point (b) speaks to the relationship between profit
sharing and high-water-mark. Because the high-water mark increases following
superior performance, it is optimal to assign managers a greater share of profits
whenever his high-water mark rises. This suggests that the current practice of
fixing the profit share, say at the 20% level, could be improved. Of course, this
conclusion might not be robust to other first-order factors (say, limited liability)
that are missing in our analysis.

5. Concluding Remarks

We introduce profitability uncertainty into the model of Holmstrom and
Milgrom (1987) and study optimal long-term contracting with endogenous
learning. Although the principal and the agent hold the same belief about
project profitability along the equilibrium path, the agent’s potential deviation
by exerting effort below the recommended level leads to potential long-
lasting belief divergence between both parties and thus a “hidden information”
problem. By utilizing the convenient property of CARA preferences, we
show that optimal contracting can be reformulated to a dynamic programming
problem with only one state variable, and we characterize the optimal contract

31 It is worth noting that compared with the canonical Berk and Green (2004) model for mutual funds, our paper
features symmetric learning but abstracts away the endogenous fund flows (and hence the endogenous fund size
or assets under management).

32 In practice, although it is common for hedge fund managers to sign a so-called “noncompete clause” when
hired, mutual fund managers rarely sign these types of clauses, especially for funds offering passive investment
products (e.g., dimensional).
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by the solution to an ODE. We show that optimal effort decreases with tenure,
and the optimal contract exhibits an option-like feature in the sense that
incentives/effort rise after positive performance shocks. These two properties
rely on a combination of learning and long-term contracting, as we show the
resultant equilibrium effort profile is constant over time in the case of either
long-term contracting without learning (Holmstrom and Milgrom 1987) or
short-term contracting with learning (Holmstrom 1999).

Although we are able to give a full characterization of the optimal long-
term contract only under a specific setting (e.g., CARA preferences, Gaussian
processes), the foregoing qualitative results, that is, front-loaded effort policy
and option-like feature, likely are robust to more general settings. The main
reason we think the results extend is that the economic force behind these
results do not depend on CARA preferences or Gaussian processes. The agent’s
information rent due to belief manipulation, that is, the agent’s inclination to
shirk to distort the principal’s future belief downward, is general in any long-
term contracting environment with learning. Because later incentives enter the
agent’s forward-looking information rent in earlier periods, but not the other
way around, it is more efficient to provide incentives early on, rendering the
optimality of front-loaded effort policy. Additionally, the option-like feature
comes from the fact that the agent is risk averse, so that the marginal value of
belief manipulation benefits is lower after good performance.

Appendix A: Proofs

A.1 Proof for Lemma 1
The argument is similar to that of He (2011). Consider any contract 	= {ct ,μt } that induces an
optimal policy

{
c�
t ,μ

�
t

}
from the agent with a value v�

0, so that

v�
0 =E

μ�
[∫ ∞

0
e−rt u

(
c�
t ,μ

�
t

)
dt

]
s.t. dYt =

(
μ�

t +m
μ�

t

)
dt +σdB

μ�

t ,

dSt = rSt dt +ct dt −c�
t dt with S0 =0.

The principal knows the resultant optimal effort policy
{
μ�

t

}
, and she updates her belief according

to
{
μ�

t

}
, rather than the recommended effort policy {μt }. From the agent’s budget equation, we

have
St =

∫ t

0 er(t−s)
(
cs −c�

s

)
ds,

which gives the agent’s optimal savings path. Note that if St is bounded, then the transversality
condition holds for all measures induced by any feasible effort policies.

By invoking the replication argument similar to revelation principle, we consider giving the
agent a direct contract 	� =

{
c�
t ,μ

�
t

}
. Clearly, taking consumption-effort policy

{
c�
t ,μ

�
t

}
is feasible

for the agent with no private-savings. Now we show that
{
c�
t ,μ

�
t

}
is optimal for the agent given

this contract.
Suppose, counter-factually, that given the contract 	�, the agent finds that

{
c′
t ,μ

′
t

}
yields a

strictly higher payoff v′
0 >v�

0 in her problem, with associated savings path

S′
t =
∫ t

0 er(t−s)
(
c�
s −c′

s

)
ds,
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which satisfies the transversality condition. Formally, we have

v′
0 =E

μ′
[∫ ∞

0
e−rt u

(
c′
t ,μ

′
t

)
dt

]
>v�

0

s.t. dY ′
t =
(
μ′

t +m
μ′
t

)
dt +σdB

μ′
t ,

dS′
t = rS′

t dt +c�
t dt −c′

t dt with S0 =0.

Now we construct an contradiction to the preassumption that “given 	= {ct ,μt } the agent’s
optimal policy is

{
c�
t ,μ

�
t

}
with a value of v�

0.” Suppose that given 	= {ct ,μt }, the agent takes the
policy

{
c′
t ,μ

′
t

}
instead of

{
c�
t ,μ

�
t

}
which is claimed to be optimal. Because v′

0 >v�
0 this alternative

policy strictly dominates
{
c�
t ,μ

�
t

}
; the only thing left is to verify whether the consumption plan

is feasible given some saving policy. But, the saving policy S′′
t =St +S′

t =
∫ t

0 er(t−s)
(
cs −c′

s

)
ds

achieves
{
c′
t

}
given the income process {ct }, because

dS′′
t =dSt +dS′

t = rSt dt +ct dt −c�
t dt +

[
rS′

t dt +c�
t dt −c′

t dt
]
,

= r
(
St +S′

t

)
dt +ct dt −c′

t dt,

= rS′′
t +ct dt −c′

t dt,

which also satisfies the transversality condition limT →∞E
[
e−rT S′′

T

]
=0 if both St and S′

t satisfy
the transversality condition. Thus, given the original contract 	, the saving rule

{
S′′

t

}
supports{

c′
t ,μ

′
t

}
but delivers a strictly higher payoff v′

0. This contradicts with the optimality of
{
c�
t ,μ

�
t

}
under the contract 	.

Finally, because the principal knows that
{
c�
t ,μ

�
t

}
is optimal for the agent, the principal still

correctly knows the agent’s actual optimal effort policy
{
μ�

t

}
and thus perform the correct Bayesian

updating, and her payoff is the same as that under the contract 	= {ct ,μt }. Hence it is without loss
of generality to focus on contracts that are incentive-compatible and no-savings.

A.2 Proof for Lemma 2
Fix any constant S. Given any savings St =S and a contract 	= {c}, from time-t on the agent’s
problem is

max{̂cs },{μ̂s } E
μ̂

[∫ ∞

t

− 1

a
e
−a
(̂
cs− 1

2 μ̂2
s

)
−r(s−t)

ds

]
, (A1)

s.t. dSs = rSsds+csds− ĉsds, St =S, s >t,

dYs =
(
μ̂t +m

μ̂
t

)
dt +σdBμ̂

s ,

given his information set. Note that the agent will learn actively.
{
c�
s ,μ

�
s

}
is the solution to the

above problem, and vt (S;	) is the agent’s value.
Now consider the problem with S =0, which is the continuation payoff along the equilibrium

path:

max{̂cs },{μ̂s } E
μ̂

[∫ ∞

t

− 1

a
e
−a
(̂
cs− 1

2 μ̂2
s

)
−r(s−t)

ds

]
,

s.t. dSs = rSsds+csds− ĉsds, St =0, s >t,

dYs =
(
μ̂t +m

μ̂
t

)
dt +σdBμ̂

s ,

We claim that the solution to this problem is
{
c�
s −rS,μ�

s

}
, and therefore the value is vt (0;	)=

earSvt (S;	). There are two steps to show this. First, this solution is feasible. Second, suppose that
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there exists another policy
{̂
c ′
s ,μ̂

′
s

}
that is superior to

{
c�
s −rS,μ�

s

}
, so that the associated value

v ′
t (0;	)>e−arSvt (S;	). Consider

{̂
c ′
s +rS,μ̂′

s

}
, which is feasible to the problem in Equation

(A1). Under this plan, however, the agent’s objective is

e−arS ·maxE
μ̂
t

[∫ ∞

t

− 1

a
e
−γ
(̂
c′
s− 1

2 μ̂′2
s

)
−r(s−t)

ds

]
=e−arSv ′

t (0;	)>vt (S;	),

which contradicts with the optimality of
{
c�
s ,μ

�
s

}
. As a result, vt (S;	)=e−arSvt (0;	).

A.3 Proof for Proposition 1
{c,μ} denotes the agent’s (proposed) optimal consumption-effort policy given the compensation
contract that satisfies the first-order condition stated in the proposition. The agent’s continuation
payoff vt follows dvt =(−arvt )βtσdB

μ
t where {β} are incentives specified by the contract. We

will use the following property of {v} later:

vt =v0 exp

(∫ t

0
arβuσdBμ

u −
∫ t

0
0.5a2r2β2

uσ 2du

)
=v0 −

∫ t

0
arvsβsσdBμ

s . (A2)

It is to show that when |β|<M is bounded, vt follows a martingale (Revuz and Yor 1999, 139).
This also verifies that vt is the agent’s equilibrium continuation payoff following the equilibrium
consumption-effort policy.

We now establish the necessary conditions stated in the proposition by considering deviation
strategies on effort and consumption polices respectively. First consider the deviation policy in
effort, that is, {̂ct ,μ̂t }= {ct ,μt +εδt }, where the deviation policy {δt 	=0} is arbitrary. Due to CARA
preference, we have

u (̂ct ,μ̂t )=u(ct ,μt )e
aμt εδt +0.5aε2δ2

t .

The agent’s value under the deviation policy indexed by ε is simply

v̂0(ε)≡E
μ̂
0

[∫ ∞

0
e−rt rvt e

aμt εδt +0.5aε2δ2
t dt

]
;

note that the expectation is under the measure induced by deviating effort profile μ̂. Equations (3),
(5), and (13) imply that the effort profile μ̂, which depends on ε, induces a change of measure
relative to μ by

σdB
μ
t −σdB

μ̂
t =
(
μ̂t +m

μ̂
t −μt −m

μ
t

)
dt =

(
εδt +m

μ̂
t −m

μ
t

)
dt, (A3)

=

(
εδt −φ

∫ t

0
e−φ(t−τ ) (εδτ )dτ

)
=(εδt −ε�t )dt,

where, like in (13), we write

�s ≡φ

∫ s

0
e−φ(s−u)εδudu. (A4)

Hence we introduce the exponential martingale Nt , indexed by ε:

Nt (ε)≡exp

(∫ t

0

εδs −ε�s

σ
dBμ

s −
∫ t

0

(εδs −ε�s )2

2σ 2
ds

)
, with N0 (ε)=1,

so that according to Girsanov theorem, we have

v̂0(ε)=E
μ̂
0

[∫ ∞

0
e−rt rvt e

aμt εδt +0.5aε2δ2
t dt

]
=E

μ
0

[∫ ∞

0
Nt (ε)e−rt rvt e

aμt εδt +0.5aε2δ2
t dt

]
.

2044

Downloaded from https://academic.oup.com/rfs/article-abstract/30/6/2006/2992922
by Tsinghua University library user
on 10 April 2018



Optimal Long-Term Contracting with Learning

Now, we take derivative of v̂0(ε) with respect to ε, and evaluate it at ε=0. Because

dNt (ε)

dε

∣∣∣∣
ε=0

= Nt (ε)·
[∫ t

0

δs −�s

σ
dBμ

s −
∫ t

0

ε(δs −�s )2

σ 2
ds

]∣∣∣∣∣
ε=0

=
∫ t

0

δs −�s

σ
dBμ

s ,

we have

dv̂0(ε)

dε

∣∣∣∣
ε=0

=

{
E

μ
0

[∫ ∞

0

dNt (ε)

dε
·e−rt rvt e

aμt εδt +0.5aε2δ2
t dt

]

+E
μ
0

⎡⎢⎣∫ ∞

0
Nt (ε)e−rt rvt

d
(
eaμt εδt +0.5aε2δ2

t

)
dε

dt

⎤⎥⎦
⎫⎪⎬⎪⎭
∣∣∣∣∣∣∣
ε=0

,

=E
μ
0

[∫ ∞

0

(∫ t

0

δs −�s

σ
dBμ

s

)
·e−rt rvt dt

]
︸ ︷︷ ︸

AA

+E
μ
0

[∫ ∞

0
e−rt arvtμt δt dt

]
. (A5)

The first term AA equals to (using (A2)):

AA=E
μ
0

[∫ ∞

0
re−rt

(∫ t

0

δs −�s

σ
dBμ

s

)
·
(

v0 −
∫ t

0
arvsβsσdBμ

s

)
dt

]
,

=E
μ
0

[∫ ∞

0
re−rt

(∫ t

0

δs −�s

σ
dBμ

s

)(
−
∫ t

0
arvsβsσdBμ

s

)
dt

]

=−E
μ
0

[∫ ∞

0
re−rt

∫ ∞

s

arβsvs (δs −�s )ds

]
,

=−E
μ
0

[∫ ∞

0
e−rt arβt vt (δt −�t )dt

]
,

where the last line uses change of order of integration. Plugging this result back into (A5), and
using (A2), we have

dv̂0(ε)

dε

∣∣∣∣
ε=0

=arv0E
μ
0

[∫ ∞

0
e
−rt−∫ t

0 arβuσdB
μ
u −∫ t

0 0.5a2r2β2
uσ2du [(μt −βt )δt +βt�t ]dt

]
,

=arv0E
μ
0

[∫ ∞

0
e
−rt−∫ t

0 arβuσdB
μ
u −∫ t

0 0.5a2r2β2
uσ2du [(μt −βt )δt ]dt

]
,

+arv0E
μ
0

[∫ ∞

0
e
−rt−∫ t

0 arβuσdB
μ
u −∫ t

0 0.5a2r2β2
uσ2du

βt�tdt

]
︸ ︷︷ ︸

BB

. (A6)

Let us furhter simplify the term BB in (A6). Zt ≡−∫ t

0 arβuσdB
μ
u −∫ t

0 0.5a2r2β2
uσ 2du so that

E
μ
s [exp(Zt )]=exp(Zs ) for s <t under the condition of |β|<M being bounded (see, e.g., Revuz

and Yor 1999, 139). Then by changing the order of integration, we obtain (recall (A4)):

BB =E
μ
0

[∫ ∞

0
e−rt+Zt βt�tdt

]
=E

μ
0

[∫ ∞

0
e−rt+Zt βtφ

(∫ t

0
e−φ(t−s)δsds

)
dt

]
,

=E
μ
0

[∫ ∞

0
δsφE

μ
s

[∫ ∞

s

e−rt+Zt e−φ(t−s)βtdt

]
ds

]
,

=E
μ
0

[∫ ∞

0
e−rs+Zs δsφE

μ
s

[∫ ∞

s

eZt −Zs e−(r+φ)(t−s)βtdt

]
ds

]
.
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As a result, we have

dv̂0(ε)

ε
|ε=0 =arv0E

μ
0

[∫ ∞

0
e−rt+Zt δt

(
μt −βt +φE

μ
t

[∫ ∞

t

βse
−(r+φ)(s−t)eZs−Zt ds

])
dt

]
.

This implies that any incentive-compatible and no-saving policy must satisfy

μt =βt −φE
μ
t

[∫ ∞

t

βse
−(r+φ)(s−t)eZs−Zt ds

]
,a.s.

Otherwise, we can choose negative δt when μt >βt −φE
μ
t

[∫∞
t

βse
−(r+φ)(s−t)eZs−Zt ds

]
, and

positive δt when μt <βt −φE
μ
t

[∫∞
t

βse
−(r+φ)(s−t)eZs−Zt ds

]
(note that arv0 is negative). Then a

deviation strategy {ct ,μt +εδt } for sufficiently small ε will be profitable, leading to a contradiction.
The necessary conditions for the equilibrium consumption plan are much more standard. Fixing

μ, it is easy to show that the necessary first-order condition for the agent’s consumption-saving
problem is that his marginal utility from consumption, that is, uc (ct ,μt ), follows a martingale.
Because uc (ct ,μt )=−au(ct ,μt ) for exponential utility, and vt =E

μ
t

[∫∞
t

e−r(s−t)u(ct ,μt )dt
]
, the

result follows easily. Q.E.D.

A.4 Appendix for Section 2.4.1
To see that the first line is the agent’s total payoff from time t onwards given any effort policy
μ̂ and ĉ, define G(t)≡∫ t

0 e−rsusds+e−rt vt and G(∞) is the agent’s total payoff. Due to private
savings, us = rvs , and we have dG(t)=e−rt dvt . Therefore the total payoff (inflated by ert ) is
E

μ̂
t

[
ertG(∞)

]
=ertG(t)+E

μ̂
t

[∫∞
t

e−r(s−t)dvs

]
, which is u (̂ct ,μ̂t )dt +vt +E

μ
t

[∫∞
t

e−r(s−t)dvs

]
by

ignoring utilities occurring before t . Under equilibrium effort, vs is martingale, and thus
E

μ
t

[∫∞
t

e−r(s−t)dvs

]
=0.

A.5 Appendix for Section 3.1
First of all, as mt follows a martingale with m0 =0, we have

E

[∫ ∞

0
e−rt dYt

]
=E

[∫ ∞

0
e−rt (μt +mt )dt

]
=E

[∫ ∞

0
e−rtμt dt

]
.

And, for wage cost, we have,

E

[∫ ∞

0
−e−rt 1

a
ln(−arvt )dt

]
=E

[∫ ∞

0

ln(−arvt )

ar
d
(
e−rt

)]

=− ln(−arv0)

ar
−E

[∫ ∞

0
e−rt d ln(−vt )

ar

]

=− ln(−arv0)

ar
+E

[∫ ∞

0

1

2
e−rt arσ 2β2

t dt

]
,

where we have used Equation (30) in the last equality and the fact that βt ’s are bounded (so

E

[∫∞
0 e−rt dvt

vt
dt
]

=−E
[∫∞

0 e−rt arβtσdBt

]
=0).

A.6 Appendix for Section 3.2
Now we derive the evolution of pt . Define p̃t ≡ (−arvt )pt . The definition of pt (see Equation (20))
implies p̃t =Et

[∫∞
t

φ (−arvsβs )e−(φ+r)(s−t)ds
]
. Based on the martingale representation theorem

applied to p̃t e
−(φ+r)t , there existssome progressively measurable process γ̃t so that

dp̃t =((r +φ)p̃t −φ (−arvtβt ))dt + γ̃t σdBt .
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Note that dvt =(−arβt vt )σdBt and define γt ≡ γ̃t /(−arvt ), we have

dpt =
dp̃t

(−arvt )
+

p̃t(
arv2

t

)dvt +
1

2

(
− 2p̃t

arv3
t

(dvt )
2 +

2

arv2
t

〈dp̃t ,dvt 〉
)

=
((r +φ)p̃t −φ (−arvtβt ))dt + γ̃t σdBt

(−arvt )
+

p̃t(
arv2

t

) (−arvtβt )σdBt

− p̃t

arv3
t

(−arvtβt )
2σ 2dt +

1

arv2
t

σ 2 (−arvtβt )γ̃t dt

=
[
(r +φ)pt −φβt +arσ 2βt (γt +arptβt )

]
dt +σ (γt +arptβt )︸ ︷︷ ︸

≡σ
p
t

dBt

≡[(r +φ)pt +βt

(
arσσ

p
t −φ

)]
dt +σ

p
t dBt .

A.7 Proof for Proposition 2
We will prove the key Proposition 2 in several steps. As a preparation, we will first show that for
any feasible contract, pt is bounded in

[−Mp,−Mp

]
. In other words, in Proposition 2, V (p) is

strictly concave over an compact interval
[−Mp,−Mp

]
.

A.7.1 Step 0: Relaxed problem and parameter restrictions. Recall that we restrict the feasible
incentive slopes {βt } to be bounded, that is, some sufficiently large constant M exists such that βt ∈
[−M,M]. This is in the same spirit as imposing the transversality condition, because given bounded
incentives {βt }, the promised information rent p–as expected future discounted incentives—is also
bounded. This boundedness result holds for any feasible contract, not just the optimal one.

Define ±Mp ≡± φM
φ+r

. The following lemma shows that the information rent pt is bounded in[−Mp,+Mp

]
if incentives {βt } are bounded in [−M,M]. Further, the boundaries for pt , if ever

reached (might be off equilibrium), are absorbing.

Lemma 3. Suppose that βt ∈ [−M,M] where M is a given constant. Then the state variable pt

reaches ±Mp if, and only if, βs =±M,∀s ≥ t , which implies that ±Mp are absorbing states for p.
As a result, when p=±Mp , V

(±Mp

)
is quadratic in M like in (A13).

Proof. Suppose that the control variable is constrained such that βt ∈ [−M,M], where M >0 is
an arbitrarily large, but fixed constant. Recall the definition of pt , and we have

pt =E

[∫ ∞

0
φβt e

−(φ+r)t e

(
−∫ t

0 arβvσdBv− 1
2
∫ t
0 a2r2β2

v σ2dv
)
dt

]

≤E

[∫ ∞

0
φMe−(φ+r)t e

(
−∫ t

0 arβvσdBv− 1
2
∫ t
0 a2r2β2

v σ2dv
)
dt

]
=

φM

φ+r
=Mp,

where the equality is obtained only if βt =M for all t . Thus, at any time the feasible state variable
p is bounded. Similarly, we can show that p≥− φM

φ+r
=−Mp . Moreover, this result implies that

whenever pt =±Mp , we must have that for ∀s ≥ t ,

βs =±M,ps =±Mp,and μs =βs −ps =± rM

φ+r
.

Therefore, once pt hits ±Mp , the state ps will stay there from then on. In this sense ±Mp are
absorbing boundaries. �
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Now we can write problem (33) in the standard dynamic programming language. Substituting
μt =βt −pt in the principal’s objective, we have

V (p)= max{
βt ,σ

p
t

}E
{∫ ∞

0
e−rt

[
(βt −pt )− 1

2
(βt −pt )

2 − 1

2
arσ 2β2

t

]
dt

}
(A7)

s.t. dpt =
[
(φ+r)pt +βt

(
arσσ

p
t −φ

)]
dt +σ

p
t dBt for all t >0, and p0 =p

βs ∈ [−M,M], pt ∈
[−Mp,+Mp

]
, and pt =±Mp are absorbing.

We are after the optimal policy
{
β∗

t ,σ
p,∗
t

}
as functions of the state variable pt . And Lemma 3

implies that we know the value function at the boundaries ±Mp :

V
(±Mp

)
=
∫ ∞

0
e−rt

(
± rM

φ+r
− 1

2

(
rM

φ+r

)2

− 1

2
a2r2σ 2M2

)
ds

=± M

φ+r
− r

2

[
1

(φ+r)2
+a2σ 2

]
M2. (A8)

For ease of argument, we first consider the principal’s relaxed maximization problem given M

(and Mp = φM
φ+r

):

V (p;M)≡ max{
βt ,σ

p
t

}E
[∫ ∞

0
e−rt

(
μt − 1

2
μ2

t − 1

2
arσ 2β2

t

)
dt

]
(A9)

s.t. dpt =
[
(φ+r)pt +βt

(
arσσ

p
t −φ

)]
dt +σ

p
t dBt for all t >0, and p0 =p

pt is absorbing at±Mp ,

βt can exceed M (but remains finite) when pt ∈
(−Mp,Mp

)
. (A10)

Problem (A9) is a relaxed version of the principal’s original problem (33), due to Equation (A10).
Essentially, given M , in the original problem (33) we require βt ∈ [−M,M] for any time t ; while
in problem (A9) we only require βt ∈ [−M,M] whenever pt hits ±Mp in light of Lemma 3. Thus,
when p=±Mp , the boundary conditions are the same between these two problems. However, this
relaxation helps because the relaxed problem (A9) allows us to use the interior first-order condition
of β when p∈(−Mp,Mp

)
. We will show that for sufficiently large M the value achieved in the

relaxed problem is the same as that in the original problem, which implies that the solution to the
relaxed problem is also that to the original problem.

Let us define two functions, which prove to be useful in saving notations:

H1 (p)≡ 1

φ
p− 1

2

r

φ2
p2 − aσ 2 (φ+r)2

2φ2
p2,

H2 (p)≡ 1

r

[
1

2

(1+p)2

1+arσ 2
−p− 1

2
p2

]
.

Recall the constant pd in Proposition 2 is given in (43).
We state assumptions required for the proof next.

Assumption 2: The parameters satisfy the following condition, which is equivalent to (42)

a

[
2

(
φ

r
+1

)3

−φσ 2

]
<

φ

r
. (A11)

Assumption 3: The feasible policy space for incentives is bounded given state p, that is, β (p)<∞
(though β (p) may exceed M given M).
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To solve the relaxed problem, we first focus on the following key ODE, with the boundary
condition (A13) given in Equation (A8):

rV (p)=
1

2

(
1+p−φVp (p)

)2
1+arσ 2 +a2r2σ 2 (Vp (p))2

Vpp

−p− 1

2
p2 +Vp (p)(φ+r)p, (A12)

s.t.V
(±Mp

)
=H1

(±Mp

)
. (A13)

We proceed with the following four steps:
Step 1: We first focus on the ODE in Equation (A12). We show that at p=0, we have V (0)=0 and
Vp (0)= 1

φ
.

Step 2: Under assumption 2, this ODE in Equation (A12) satisfies concavity and positivity of
the denominator condition.

(a), Prove the concavity and positivity of the denominator at p=0.

(b), Prove the concavity and positivity of the denominator for general p>0.

(c), Prove the concavity and positivity of the denominator for p<0.

(d), Prove that the lower boundary 0 is absorbing and the upper boundary p̄ is entrance-no-
exit (heuristically, at p̄ the volatility of σp (p̄)=0 but its drift is strictly negative).

Step 3: From Steps 2.a-2.d, it follows from a standard verification theorem that the solution to
the ODE in Equation (A12) is the value function of the principal’s relaxed problem. Furthermore,
it is never optimal to run outside the region [0,p] for the relaxed problem.

Step 4: Show that the value function for the relaxed problem is also the value function for the
principal’s original problem and p̄ is independent of M for sufficiently large M .

A.7.2 Step 1: V (0)=0andVp (0)= 1
φ

. We show that V (0)=0 and Vp (0)= 1
φ

in three steps:
Step 1.a: We first show that there must exist a solution to the following equation:

T (p)≡1+p−φVp =0.

We know that V (0)≥0, which is the value of deterministic policy. We also know that

V
(−Mp

)
=H1

(−Mp

)
<0 and V

(
Mp

)
=H1

(
Mp

)
<0.

Then according to the intermediate value theorem, there exists p1 >0 so that

T (p1)=1+p1 −φVp (p1)=1+p1 −φ
V
(
Mp

)−V (0)

Mp

>1,

and there also exists p2 <0 such that

T (p2)=1+p2 −φVp (p2)=1+p2 −φ
V (0)−V

(−Mp

)
Mp

<0,

for sufficiently high Mp . Therefore, we can find a point p such that

1+p−φVp

(
p
)

=0. (A14)

Step 1.b: Suppose that 1+arσ 2 +a2r2σ 2
V 2
p

(
p
)

Vpp

(
p
) 	=0. We aim to show that p=0 so that equations

(A14) and (A12) imply V (0)=0 and Vp (0)= 1
φ

. Differentiating the HJB in Equation (A12) with
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respect to p at p, we have

rVp

(
p
)

=−1−p+Vpp

(
p
)

(φ+r)p+Vp

(
p
)

(φ+r),

which, together with Equation (A14), imply that

Vpp

(
p
)
p=0.

Therefore, either p=0 or Vpp

(
p
)

=0. We first rule out the case of Vpp

(
p
)

=0. Note that this case

implies the denominator of the first term in the right-hand side of Equation (A12) is infinite, so that
V must satisfy

rV
(
p
)

=−p− 1

2
p2 +

(
1+p

)(
1+

r

φ

)
p, (A15)

Further, it follows from Taylor expansion that

V
(
p+ε

)
=V

(
p
)

+
1

φ

(
1+p

)
ε+o

(
ε2
)

(A16)

Vp

(
p+ε

)
=

1

φ

(
1+p

)
+o(ε).

Thus, evaluating the HJB Equation (A12) at p+ε, we have

rV
(
p+ε

)
=

1
2 (ε−o(ε))2

1+arσ 2 +a2r2σ 2
V 2
p

(
p+ε

)
Vpp

(
p+ε

)
−p−ε−

(
p+ε

)2

2
+

1

φ

(
1+p

)
(φ+r)

(
p+ε

)
+o
(
ε2
)

=−p− 1

2
p2 +

(
1+p

)(
1+

r

φ

)
p−ε−pε− 1

2
ε2 +

(
1+p

)(
1+

r

φ

)
ε+o

(
ε2
)

= rV
(
p
)

+
r

φ

(
1+p

)
ε− 1

2
ε2 +o

(
ε2
)
,

where the second equality uses the fact that
V 2
p

(
p+ε

)
Vpp

(
p+ε

) goes to infinity as ε goes to zero because the

continuity of Vpp

(
p
)

implies that Vpp

(
p+ε

)
is at the order of o(1), and the last equality follows

from Equation (A15). But this contradicts Equation (A16), since they do not match at the second
order ε2. As a result, p=0 and thus Vp (0)= 1

φ
.

Step 1.c: Now suppose that 1+arσ 2 +a2r2σ 2
V 2
p

(
p
)

Vpp

(
p
) =0, that is,

Vpp

(
p
)

=−
a2r2σ 2V 2

p

(
p
)

1+arσ 2
=− a2r2σ 2

1+arσ 2

1

φ2

(
1+p

)2
, (A17)

which implies that we cannot ignore the term with 1+p−φVp . Due to L’Hospital’s rule,(
1+p−φVp

)2
1+arσ 2 +a2r2σ 2 V 2

p
Vpp

=
2
(
1+p−φVp

)(
1−φVpp

)
a2r2σ 2 2VpV 2

pp−V 2
pVppp

V 2
pp

. (A18)
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Differentiating the HJB Equation (A12), we have,

rVp =

(
1+p−φVp

)(
1−φVpp

)
1+arσ 2 +a2r2σ 2 V 2

p
Vpp

− 1

2

(
1+p−φVp

)2

(
1+arσ 2 +a2r2σ 2 V 2

p
Vpp

)2

[
a2r2σ 2 2VpV 2

pp −V 2
p Vppp

V 2
pp

]

−1−p+Vp (φ+r)+Vpp (φ+r)p.

Plugging Equation (A18) into the above equation, we find that the two terms in the first line cancel
each other, and

0=−1−p+Vpφ+Vpp (φ+r)p=Vpp (φ+r)p,

which is the same as before. Therefore, either we have

p=0, and Vp (0)=
1

φ
,

or we have Vpp

(
p
)

=0 and p=−1, due to Equation (A17). Furthermore, in the second case, we

have

Vpp (−1)=0,Vp (−1)=0, and
V 2

p (−1)

Vpp (−1)
=− 1+arσ 2

a2r2σ 2

In Lemma A.4 in the Internet Appendix, we will show that for any p, if

Vpp (p)=Vp (p)=0 and lim
V 2

p (p)

Vpp (p)
→−q,

then q =0 or 1
ar

.33 Therefore, the second alternative results in a contradiction and we must have

p=0, and Vp (0)= 1
φ

.

We still need to show that V (0)=0 under the assumption 1+arσ 2 +a2r2σ 2
V 2
p

(
p
)

Vpp

(
p
) =0.

Suppose that V (0)=v>0. First, the HJB in Equation (A12) implies that

lim
p→0

(
1+p−φVp

)2
1+arσ 2 +a2r2σ 2 V 2

p
Vpp

=2rv>0.

Thus, it follows from Equation (38) that the policy function β (p) at p=0 has the value

β (0)= lim
p→0

(
1+p−φVp

)2
1+arσ 2 +a2r2σ 2 V 2

p
Vpp

· 1

1+p−φVp

= lim
p→0

2rv
1

1+p−φVp

=∞.

This contradicts with Assumption 3 that our policy space is restricted to be bounded at p=0.

A.7.3 Step 2: Prove the concavity and positivity. We delegate the proof of this step to the
companion Internet Appendix.

33 It is important to point out that the proof for Lemma A4 in the companion Internet Appendix does not use any
results from step 1 here. Thus, there is no circular argument.
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A.7.4 Step 3: Verification. Define the auxiliary gain process, as a function of the contract 	, as

Gt (	)=
∫ t

0
e−rs

(
(βs −ps )− 1

2
(βs −ps )2 − 1

2
a2r2σ 2β2

s

)
ds+e−rt V (p).

Define τ as the hitting time when p reaches ±Mp , which could be infinite. Obviously, Gτ (	) is
the actual payoff from the contract 	. For given t , it is easy to show that

Et

[
ert dGt

]
=

[
−rV (p)+(βt −pt )− 1

2 (βt −pt )
2 − arσ2

2 β2
t

+Vp

[
(φ+r)pt +βt

(
arσσP −φ

)]
+ 1

2 Vpp

(
σ

p
t

)2
]

dt +Vpσ
p
t dBt .

Therefore,
dGt =μG (p)dt +e−rt Vpσ

p
t dBt .

Due to construction of the ODE in the HJB equation, under the optimal policy 	∗ we have
μG (p)=0, whereas for other policies we have μG (p)≤0. Also, since Vp is bounded, and we
restrict the policy

{
σ

p
t

}
to be well-behaved (square integrable in the usual sense),

∫ t

0 e−rt VpσP
s dBs

is a martingale. Therefore, under the optimal contract E[Gτ (	∗)]=G0 (	∗)=V (p0).
Given any T >0, we have

E[Gτ (	)]=E

[
GT ∧τ (	)+1T ≤τ

(∫ τ

T

e−rs

(
(βs −ps )− 1

2
(βs −ps )2 − 1

2
a2r2σ 2β2

s

)
ds

+e−rτ V (pτ )

)]

≤G0 +e−rT
E

[∫ τ

T

e−r(s−T ) 1

2
ds

]
where E

[∫ τ

T
e−r(s−t) 1

2 ds
]

is the first-best project value. Therefore, let T →∞, then we have
E[Gτ (	)]≤G0 =V (p). This implies that the proposed contract solves the relaxed problem.

A.7.5 Step 4: p̄ is independent of M . We now show that p̄ is independent of M . Take some
sufficiently large M1, and consider the solution obtained with the upper entry-no-exit boundary p̄1.

Note that p̄1 <M1 strictly, because V (p̄1;M1)>0 while at Mp,1 =
(

1+ r
φ

)
M1 the value is strictly

negative. And, for p∈ [0,p̄1], we have

V (p;M1)=E

[∫ ∞

0
e−rt

(
(βt −pt )− (βt −pt )

2

2
− 1

2
a2r2σ 2β2

t

)
dt

∣∣∣∣∣p0 =p

]
.

It is clear that given p̄1, this function is independent of M1, because under the optimal policy
p∈ [0,p̄1], and M does not affect the flow payoff per se (note that βt is assumed to be unconstrained
in the relaxed problem).

Now consider M2 ∈ (p̄1,M1). The next lemma follows.

Lemma 4. V (p;M1)≥V (p;M2) for p∈ [0,p̄1].

Proof. Mp,i denotes the corresponding Mp’s. Since M1 >M2 and Mp,1 >Mp,2, the policy space
for the semi-constrained problem with M1 is strictly larger than the policy space in the problem

with M2. To see this, note that for the problem 1 (with M1), the principal can choose βs =
(

1+ r
φ
p
)

for s >t once pt ∈
[
Mp,2,Mp,1

]
, which is exactly the constraint for the policy space of problem 2

with M2. As a result, V (p;M2)≤V (p;M1) for p∈ [0,p̄1]. �

However, given M2, consider the exact same policy under M1 with endogenous upper entry-
no-exit boundary p̄1, which generates the same value as V (p;M1). As a result, the policy under
M1 also solves the problem with M2. Therefore we must have the same solution for both Mi ’s,
and p̄1 = p̄2.
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A.7.6 Step 5: Relaxed problem solves the original problem. We now show that the relaxed
problem (A9) solves the original problem (A7). As explained before, our original problem in
Equation (A7) has more stringent constraints than the relaxed problem (A9): In the original problem
we require βt ≤M always, while for the relaxed problem we only require that βt ≤M whenever
pt hits ±Mp . As a result, we have V (p)≥V C (p) always. Here, V C (p) denotes the value for the
principal’s original problem.

To prove our theorem, it suffices to show that in the region [0,p], we have V (p)=V C (p), that
is, the relaxed problem and the original problem achieve the same value for sufficiently high M .
Take the solution V (p) and its corresponding incentive policy βM (·); and define

�(M)≡ max
0≤p≤p̄

∣∣βM (p)
∣∣,

where βM (p) emphasizes the possibility of the dependence of the optimal policy on the parameter
value M . If we can show that we can choose sufficiently high M so that �(M)≤M holds, then
the additional constraints are never binding in the original problem, and both problems share the
same solution obtained in Proposition 2.

We show that �(M) is independent of M for sufficiently high M , which immediately implies
our result. Clearly, it is sufficient to show that both the relaxed value function V (p) and p̄ are
independent of M . We have shown that p̄ is independent of M when M is sufficiently high.
Moreover, since the endogenous state p never goes outside the region [0,p̄], we have

V (p)=E0

[∫ ∞

0
e−rt

(
(βt −pt )− (βt −pt )

2

2
− 1

2
a2r2σ 2β2

t

)
dt

∣∣∣∣∣p0 =p

]

to be independent of M .As a result, max0≤p≤p̄

∣∣βM (p)
∣∣ is independent of M , and our result follows.

A.8 Proof for Proposition 3
Consider any alternative policy {̂c,μ̂} deviating from the original policy {c,μ}, with an expected
payoff E

μ̂
0

[∫∞
0 e−rsu (̂cs ,μ̂s )ds

]
. To prove that this deviation payoff cannot exceed the equilibrium

payoff v, we are follow Sannikov (2014) and construct an upper bound for the deviation policies.
We take the optimal contract as given, which gives

{
β∗

t ,σ
p∗
t

}
. In this proof, we omit “*” on{

β∗
t ,σ

p∗
t

}
without any risk of confusion.

To construct the upper bound for deviation payoffs, we will show that it is sufficient to keep
track of two deviation state variables that matter to the agent’s potential deviation value. The first
deviating state variable captures the agent’s private saving:

St ≡
∫ t

0
er(t−s) (cs − ĉs )ds.

The second deviating state variable is the belief wdge as defined in (13) captures the persistent
belief manipulation effect:

�t =φ

∫ t

0
eφ(s−t) (μs −μ̂s )ds.

Given these two deviating variables, we propose a candidate of an upper bound for the agent’s
deviation value, which is defined as

W (vt ,pt ;St ,�t )≡ vt︸︷︷︸
equilibrium contract

· exp(−arSt )︸ ︷︷ ︸
deviation value from savings

·exp

(
−ar

(
1

φ
�tpt +0.5k�2

t

))
︸ ︷︷ ︸

deviation value from belief distortions

.

(A19)
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The linear coefficient pt in front of �t reflects the first-order gain of the information rent pt from
belief-manipulation; the quadratic coefficient k will be chosen shortly to ensure W (vt ,St ,�t ) being
the upper bound of the agent’s deviation value.

We further require the following assumptions on the agent’s deviation strategies for the usual
transervasality conditions, which are standard in infinite-horizon consumption/saving problems.
More specifically, there exist (however large) positive constants Ls and L�, so that the agent’s
deviation strategies satisfy

|St |<Ls , and |�t |<L�.

We have the following key lemma showing that W (vt ,pt ;St ,�t ) is the upper bound of the agent’s
deviation value.

Lemma 5. Facing the contract {ct ,μt }, suppose that the agent’s deviation history leads to a pair
of deviation states as (St ,�t ) at time t . Then the agent’s deviation value from time t onwards is
bounded above by W (vt ,pt ;St ,�t ), if either (A22) or (A23) holds.

Proof. We first give the outline of the argument. To prove W (vt ,St ,�t ) is an upper bound for the
agent’s deviation value, define the auxiliary gain process Gt associated with any feasible policies
{̂c,μ̂} as

Gt

({̂cs ,μ̂s}∞s=0

)≡∫ t

0
e−rsu (̂cs ,μ̂s )ds+e−rtW (vt ,pt ;St ,�t ).

Clearly, E
μ̂
0 [G∞]=E

μ̂
0

[∫∞
0 e−rsu (̂cs ,μ̂s )ds

]
is the expected payoff under the feasible policy,

given the transversality condition lim
s→∞E

μ̂
0

[
e−rtWt

]
=0 (which is implied by Assumption 1 for

transversality conditions). On the other hand, G0 =W (v0,S0,�0) is the proposed upper bound of
the agent’s deviation value given the current relevant deviation states (S0,�0). Obviously, one
sufficient condition for E

μ̂
0 [G∞]≤G0 =W (v0,S0,�0), that is, the upper bound (A19) is valid, is

that the auxiliary gain process Gt is a supermartingale for any deviation policy under the agent’s
information set.

Now we start the proof. For ease of notation,

δt = μ̂t −μt ,ût ≡u (̂ct ,μ̂t ), ut ≡u(ct ,μt ), with ut = rvt .

Under the measure μ̂, we have evolutions

dpt =

[
(φ+r)pt +βt

(
arσσ

p
t −φ

)
+

σ
p
t

σ
(δt +�t )

]
dt +σ

p
t dB

μ̂
t ,

dvt =−vt arβt (σdB
μ̂
t +[δ̂t +�t ]dt),

dSt =(rSt +ct − ĉt )dt, and d�t =−φ(δt +�t )dt.

It follows that

ert dGt = [̂ut −rWt ]dt +Wtdvt −arWt

[
dSt +d

(
1

φ
�tpt +0.5k�2

t

)]
+(− ar

φ
�t )

Wt

vt

〈dvt ,dpt 〉

= [̂ut −rWt ]dt +Wtdvt −arWt

[
dSt +d

(
1

φ
�tpt +0.5k�2

t

)
−�t

ar

φ
βtσσ

p
t dt

]
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=−arβtWtσdB
μ̂
t +[̂ut −rWt ]dt −arWt

1

φ
�tdpt

−arWt

(
βt [δt +�t ]dt +dSt +

(
1

φ
pt +k�t

)
d�t −�t

ar

φ
βtσσ

p
t dt

)

=[−arβtWtσ −arWt

1

φ
�tσ

p
t ]dB

μ̂
t −rWt

a

φ
�t

[
(φ+r)pt +βt

(
arσσ

p
t −φ

)
+

σ
p
t

σ
(δt +�t )

]
dt

+rWt

{
e
−a
(̂
ct − 1

2 μ̂2
t

)
+a
(
ct − 1

2 μ2
t

)
+ar

(
St + 1

φ
pt �t +0.5k�2

t

)
−1

}
dt

+rWt

{
−aβt [δt +�t ]−a(rSt +ct − ĉt )+a (pt +φk�t )(δt +�t )+�t

a2r

φ
βtσσ

p
t

}
dt.

Because ex ≥1+x and Wt <0 (since vt <0), the drift of ertGt is bounded above by

rWt

⎧⎪⎨⎪⎩
− a

φ
�t

[
(φ+r)pt +βt

(
arσσ

p
t −φ

)
+

σ
p
t
σ

(δt +�t )

]
−a

(̂
ct − 1

2 μ̂2
t

)
+a
(
ct − 1

2 μ2
t

)
+ar

(
St + 1

φ
pt�t +0.5k�2

t

)
−a(rSt +ct − ĉt )−a(βt −pt −φk�t )(δt +�t )+�t

a2r
φ

βtσσ
p
t

⎫⎪⎬⎪⎭
=arWt

[
1

2
δ2
t +(φk− σ

p
t

φσ
)δt�t +(0.5rk+φk− σ

p
t

φσ
)�2

t

]

=arWt

[
1

2

(
δt +

(
φk− σ

p
t

φσ

)
�t

)2

+

(
0.5rk+φk− σ

p
t

φσ
− 1

2

(
φk− σ

p
t

φσ

)2
)

�2
t

]
. (A20)

Notice that all the terms that are linear in the instantaneous devation δt and cumulative past
deviations �t all get cancelled, thanks to the first-order Incentive Compatibility condition for the
agent.

Our goal is to show that the sum of all the quadratic terms in (A20) is negative always. Then,
because the drift of ertGt is bounded above by (A20), it immediately implies the drift for dGt is
always negative. For all possible instantaneous deviations δt and cumulative past deviations �t ,
because Wt <0, the necessary and sufficient condition for (A20) to be negative always is that the
term in the bracket is positive for the all equilibrium values σ

p
t in the optimal contract. In other

words, we require that for we choose some k so that for in the optimal contract, σ
p
t satisfies

1

2

(
φk− σ

p
t

φσ

)2

−
(

0.5rk+φk− σ
p
t

φσ

)
≤0

⇔φ2k2 −(r +2φ+2
σ

p
t

σ
)k+(

σ
p
t

σφ
+1)2 −1≤0 (A21)

Obviously, this imposes certain sufficient condition on the range of
{
σ

p
t

}
in the optimal contract.

We give two particular examples of the sufficient conditions.

1. Proposition 2 shows that
{
σ

p
t

}
is bounded in the optimal contract. What is more, although

we cannot prove it rigorously, the optimal contract exhibits the “option-like” feature so
that σ

p
t >0 which holds in all of our numerical examples. The range of σ

p
t is represented

by [0,Lσp ] with Lσp ≡supσ
p
t >0. Then the two real roots for the left-hand side of the
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quadratic Equation (A21), represented by k−
(
σ

p
t

)
<k+

(
σ

p
t

)
, are

k+
(
σ

p
t

)
=

r +2φ

2φ2
+

σ
p
t

σφ2
+

√
4φ2 +r2 +4r(φ+

σ
p
t
σ

)

2φ2
,

k−
(
σ

p
t

)
=

r +2φ

2φ2
+

σ
p
t

σφ2
−

√
4φ2 +r2 +4r(φ+

σ
p
t
σ

)

2φ2
.

Since σ
p
t >0, both roots are increasing in σ

p
t because ∂k+

∂σ
p
t

= 1
σφ2 (1+ r√

(2φ+r)2+4rσ
p
t /σ

)>0,

and ∂k−
∂σ

p
t

= 1
σφ2 (1− r√

(2φ+r)2+4rσ
p
t /σ

)>0. As a result, if k−
(
σ

p
t =Lσp

)
<k+

(
σ

p
t =0

)
, then

there exists a positive k lying inside the interval

k∈[k−
(
σ

p
t =Lσp

)
,k+
(
σ

p
t =Lσp

)]
,

so that the drift for dGt is always negative for all σ
p
t ∈ [0,Lσp ]. To summarize, we need

the following sufficient condition

Lσp

σφ2
−
√

4φ2 +r2 +4r(φ+
Lσp

σ
)

2φ2
≤ r +2φ

2φ2
, where Lσp ≡supσ

p
t and σ

p
t >0. (A22)

Because the left-hand side is increasing in Lσp >0, this condition requires the volatility

of information rent σ
p
t cannot be too high. A slightly more relaxed sufficient condition

for (A22) is to set the Lσp inside the square root to be zero, and the condition simplifies
to Lσp ≤σ (r +2φ).

2. If we do not impose that σ
p
t >0, one can still follow the above logic to give a similar but

more complicated sufficient condition for the range of
{
σ

p
t

}
. But there is a natural choice

of k =1 that makes the condition (A21) transparent without σ
p
t >0. In this case, (A21) can

be simplified to

(σp
t )2 ≤σ 2φ2

(
r +2φ−φ2

)
, k =1 (A23)

which gives an upper bound on the absolute magnitude of σ
p
t . Note this condition does

not require the preassumption that σ
p
t >0.

To summarize, we have shown that under the measure induced by μ̂,

dGt =negative drift+[−arβtWtσ −arWt

1

φ
�tσ

p
t ]dB

μ̂
t ,

if the volatility of information rent, σ
p
t , is not excessively high (in the sense of either (A22) or

(A23), which easily holds in our numerical example). Intuitively, all else equal, the agent’s global
deviation value tends to be increasing in the volatility σ

p
t of his deviation state variable, because the

agent’s has the “option” to adjust his optimal strategy swiftly following a sequence of deviations
and performance shocks.

The last routine step to ensure Gt being a supermartingale is to check the following condition:

E
μ̂
0

[∫ T

0
(arβtWtσ +arWt

1

φ
�tσ

p
t )dB

μ̂
t

]
=0 for all T .

Since |St |, |�t |, |pt |, |βt | and |σp
t | are bounded, we only need to ensure the square integrability

condition (Revuz and Yor 1999, 139):

E
μ̂
0

[∫ T

0

(
e−rt vt

)2
dt

]
<∞ for all T .
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Under μ̂, using (A3) we have dvt
vt

=−arβtσdB
μ̂
t −arβt (δt −�t )dt, which implies that

vt =v0 exp

[∫ t

0
−arβsσdBμ̂

s −
∫ t

0
0.5a2r2β2

s σ 2ds−
∫ t

0
arβs [δs −�s ]ds

]
.

Lμ and M represent the upper bounds of |μt | and |βt |, respectively; that is, |μt |<Lμ and |βt |<M .
Then we have∣∣∣∣∫ t

0
arβs [δs −�s ]ds

∣∣∣∣=ar

∣∣∣∣∫ t

0
δs

[
βs −φ

∫ t

s

eφ(s−u)βudu

]
ds

∣∣∣∣
<ar

∫ t

0
|δs |
∣∣∣∣βs −φ

∫ t

s

eφ(s−u)βudu

∣∣∣∣ds

<ar

∫ t

0
2Lμmax

(
βs,φ

∫ t

s

eφ(s−u)βudu

)
ds <2arLμMt,

∣∣∣∣∫ t

0
0.5a2r2β2

s σ 2ds

∣∣∣∣<0.5a2r2σ 2M2t.

Hence, ∫ T

0

(
e−rt vt

)2
dt =

∫ T

0

(
e−rt v0

)2
exp

[∫ t

0
−2arβsσdBμ̂

s −
∫ t

0
a2r2β2

s σ 2ds

−
∫ t

0
2arβs [δs −�s ]ds

]
dt

<

∫ T

0
(v0)2e4arLμMt−2rt exp

[∫ t

0
−2arβsσdBμ̂

s

−
∫ t

0
2a2r2β2

s σ 2ds

]
exp

[∫ t

0
a2r2β2

s σ 2ds

]
dt

<

∫ T

0
(v0)2e4arLμMt+a2r2M2σ2t−2rt exp

[∫ t

0
−2arβsσdBμ̂

s

−
∫ t

0
2a2r2β2

s σ 2ds

]
dt.

Because
∫ t

0 (2arβsσ )2ds < (2arMσ )2 t for all t , exp
[∫ t

0 −2arβsσdB
μ̂
s −∫ t

0 2a2r2β2
s σ 2ds

]
is an

exponential martingale under the measure induced by μ̂. Therefore, for all T , we have

E
μ̂
0

[∫ T

0

(
e−rt vt

)2
dt

]
<

∫ T

0
e4arLμMt+a2r2σ2M2t−2rt (v0)2

E
μ̂
0

[
exp

(∫ t

0
−2arβsσdBμ̂

s −
∫ t

0
2a2r2β2

s σ 2ds

)]
dt

=(v0)2
∫ T

0
e4arLμMt+a2r2σ2M2t−2rt dt <∞.

Now, given the fact that Gt is a supermartingale, we have

W (S0,�0)=G0 ≥E
μ̂
0 lim

t→∞[Gt ]=E
μ̂
0

[∫ ∞

0
e−rsu (̂cs ,μ̂s )ds+ lim

t→∞
[
e−rtWt

]]

=E
μ̂
0

[∫ ∞

0
e−rsu (̂cs ,μ̂s )ds

]
,
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which is the agent’s deviation payoff. Here, the last equality requires the transversalilty condition
which is ensured by the assumption of bounded |St | and |�t |. This implies that (A19) is indeed the
upper bound for the agent’s deviation value. �

We have shown that W (vt ,pt ;St ,�t ) is an upper bound for the agent’s potential deviation value
given the deviated states (St ,�t ). Then, for an agent who has not deviated yet with St =�t =0, the
upper bound of his deviation value is just vt . Because the equilibrium strategy achieves this upper
bound vt , the equilibrium strategy is indeed globally optimal. As a result, we have shown that the
equilibrium strategy that achieves vt is indeed optimal. Q.E.D.

A.9 What If the Agent Cannot Privately Save?
This appendix analyzes the case in which the agent cannot private save. Recall the following
definitions

vt ≡Et

[∫ ∞

t

e−r(s−t)u(cs ,μs )ds

]
,p̃t ≡Et

[∫ ∞

t

φe−(r+φ)(s−t)β̃sds

]
,β̃t =(−arvt )βt ,

and the associated volatilities β̃t and γ̃t so that

dvt =(rvt −ut )dt + β̃t σdBt ,

dp̃t =
(
(r +φ)p̃t −φβ̃t

)
dt + γ̃t σdBt .

J̃ (v,p̃) denotes the principal’s value function (ignoring the posteior mean of the project m), which
satisfies the HJB

rJ̃ = max
c,β̃,γ̃

μ
(
c,β̃;p̃)−c+ J̃v

(
rv−u

(
c,μ

(
c,β̃;p̃)))+ J̃p̃

(
(r +φ)p̃−φβ̃

)
+

σ 2

2

[
J̃vvβ̃

2 + J̃p̃p̃ γ̃ 2 +2J̃vp̃ β̃γ̃
]
, (A24)

with the agent’s optimal effort μ
(
c,β̃;p̃) satisfying the first-order condition

−uμ

(
ct ,μ

(
ct ,β̃t ;p̃lt

))
= β̃t −p̃t .

Define

pt ≡ p̃t

(−arvt )
;βt ≡ β̃t

(−arvt )
;γt ≡ γ̃t

(−arvt )
, and σ

p
t ≡σ (γt +arptβt ).

A derivation similar to that in Appendix A.6 leads to the evolution of pt in the no private savings
case (with rvt 	=ut ) as

dpt =

[
(r +φ)pt − pt

vt

(rvt −ut )+βt

(
arσσ

p
t −φ

)]
dt +σ

p
t dBt .

Furthermore, the agent’s optimal effort policy can be redefined as μ(c,β;v,p). For simplicity, we
omit (v,p) in the expression. As explained in the main text, the agent’s incentive-compatibility
condition is uμ (ct ,μt )=arvt (βt −pt ), and since under CARA we have uμ =aμu, it becomes

u(ct ,μt )=
rvt

μt

(βt −pt ).

This implies that

ct =
1

2
μ2

t − 1

a
ln(−arvt )− 1

a
ln

βt −pt

μt

. (A25)
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The principal’s value function can be redefined as J (v,p)≡ J̃
(
v,

p̃t−arvt

)
; and (A24) implies

that

rJ = max
c,β,σp

μ(c,β)−c+Jv (rv−u(c,μ(c,β)))

+Jp

(
(r +φ)p− p

v
(rv−u(c,μ(c,β)))+β (arσσp −φ)

)
+

1

2

[
σ 2Jvv (−arv)2β2 +Jpp (σp)2 +2Jvp (−arv)βσσp

]
.

Given the CARA preferences, we conjecture that (ns stands for “no savings”)

J (v,p)=
ln(−arv)

ar
+V ns (p),

with Jv = 1
arv

,Jp =V ns
p ,Jvv =− 1

arv2 and Jpp =V ns
pp . Using the expression of c in (A25), and

observing that v cancels, one can simplify the HJB equation to the following ODE for V (p):

rV ns = max
μ,β,σp

μ− 1

2
μ2 +

1

a
ln

β−p

μ
+

1

a

(
1− β−p

μ

)
− 1

2
arσ 2β2

+V ns
p

(
−φ (β−p)+rp

β−p

μ
+arσσpβ

)
+

1

2
(σp)2

V ns
pp, (A26)

with the following first-order-conditions:

μ
(

1+aμ2 −aμ
)

=
(

1−arpV ns
p

)
(β−p), (A27)

σp =−arσ
V ns

p

V ns
pp

β, (A28)

β =
1

arσ 2

(1−μ)
(

1−arpV ns
p

)
1+aμ2 −aμ

+V ns
p ·
(

− φ

arσ 2
+

σp

σ

)
. (A29)

Remark 3. Comparing to private savings case in which μ=β−p, now in (A27) we have μ to
solve a cubic equation

μ
(

1+aμ2 −aμ
)

=
(

1−arpV ns
p

)
(β−p),

with its right hand side being dependent on the value function itself via V ns
p . The reason why V ns

p

matters is that when changing μ, the principal controls the agent’s utility (recall c can be fixed when
there are no private savings). This affects the drift of vt which is rvt −u(ct ,μt ) (recall (30)), and
in turn the evolution of the information rent p̃t

(−arvt ) . In contrast, with hidden savings, the agent’s
consumption adjusts with implemented μt so that ut = rvt always.

We also have a much more complicated flow term in (A26), which involves two new highly

nonlinear terms 1
a

ln β−p
μ

+ 1
a

(
1− β−p

μ

)
. In contrast, these two terms vanish when μ=β−p in the

case of private savings.

The final ODE about V (p) becomes extremely complicated. We have tried the following. From
Eq. (A28) and (A29), we have

β =

1
arσ2

(1−μ)
(

1−arpV ns
p

)
1+aμ2−aμ

− φ

arσ2 V ns
p

1+ar

(
V ns
p

)2

V ns
pp

and σp =−arσ
V ns

p

Vpp

1
arσ2

(1−μ)
(

1−arpV ns
p

)
1+aμ2−aμ

− φ

arσ2 V ns
p

1+ar

(
V ns
p

)2

V ns
pp

.
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Substituting these two equations into the HJB, we have

rV ns =max
μ

μ− 1

2
μ2 +

1

a
ln

1
arσ2

(1−μ)
(

1−arpV ns
p

)
1+aμ2−aμ

− φ

arσ2 V ns
p −p

(
1+ar

(
V ns
p

)2

V ns
pp

)

μ

(
1+ar

(
V ns
p

)2

V ns
pp

) (A30)

+
1

a

⎛⎜⎜⎜⎜⎝1−
1

arσ2

(1−μ)
(

1−arpV ns
p

)
1+aμ2−aμ

− φ

arσ2 V ns
p −p

(
1+ar

(
V ns
p

)2

V ns
pp

)

μ

(
1+ar

(
V ns
p

)2

V ns
pp

)
⎞⎟⎟⎟⎟⎠

− 1

2
arσ 2

⎛⎜⎜⎜⎝
1

arσ2

(1−μ)
(

1−arpV ns
p

)
1+aμ2−aμ

− φ

arσ2 V ns
p

1+ar

(
V ns
p

)2

V ns
pp

⎞⎟⎟⎟⎠
2

+Vp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−φ

⎛⎜⎜⎜⎝
1

arσ2

(1−μ)
(

1−arpV ns
p

)
1+aμ2−aμ

− φ

arσ2 V ns
p

1+ar

(
V ns
p

)2

V ns
pp

−p

⎞⎟⎟⎟⎠

+ rp

1
arσ2

(1−μ)
(

1−arpV ns
p

)
1+aμ2−aμ

− φ

arσ2 V ns
p −p

⎛⎜⎝1+ar

(
V ns
p

)2

V ns
pp

⎞⎟⎠
μ

⎛⎜⎝1+ar

(
V ns
p

)2

V ns
pp

⎞⎟⎠

−a2r2σ 2 V ns
p

V ns
pp

⎛⎜⎜⎜⎝
1

arσ2

(1−μ)
(

1−arpV ns
p

)
1+aμ2−aμ

− φ

arσ2 V ns
p

1+ar

(
V ns
p

)2

V ns
pp

⎞⎟⎟⎟⎠
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
a2r2σ 2

2

(
V ns

p

)2

V ns
pp

⎛⎜⎜⎜⎝
1

arσ2

(1−μ)
(

1−arpV ns
p

)
1+aμ2−aμ

− φ

arσ2 V ns
p

1+ar

(
V ns
p

)2

V ns
pp

⎞⎟⎟⎟⎠
2

.

This is way more complicated than the final ODE (39) in the case with private savings; note that
in the above ODE we have not even expressed the optimal μ explicitly yet.

We conclude by stating that it is quite challenging to even numerically solve the case without
privates savings. In unreported results that are available upon request, we analyze an important
benchmark case with deterministic contracts (i.e., implies σp =0). Recall that in the private saving
case, the resultant value function under deterministic contracts is a quadratic function, and the
solution is derived in closed form (see Proposition 4). This solution to this benchmark case helps
quite a bit in guessing the structure of value function in the general case (p=0 and p=pd ).
Unfortunately, in the case of no private savings, the ODE for deterministic contracts becomes
highly nonlinear in p, and no longer tractable like in the case of private savings.
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A.10 Proof for Proposition 4
We first conjecture that the value function for the deterministic policy, V d (p), has the following
quadratic form

V d (p)=− 1

2
Adp2 +Bdp+Cd.

Plugging the above conjecture into the following ODE for the deterministic value function

rV d (p)=
1

2

(
1+p−φV d (p)

)2
1+arσ 2

−p− 1

2
p2 +V d

p (p)(φ+r)p,

we can easily show that Bd = 1
φ

, Cd =0, and Ad satisfies

− 1

2
rAdp2 =

1

2

(
1+φAd

)2
p2

1+arσ 2
− 1

2
p2 −Ad (φ+r)p2.

Rearranging the above equation, we have

φ2(Ad
)2 −Adφ

[
r

φ

(
1+arσ 2

)
+2arσ 2

]
−arσ 2 =0,

which gives the solution for Ad :

Ad =
1

2φ

⎡⎣ r

φ

(
1+arσ 2

)
+2arσ 2 +

√[
r

φ

(
1+arσ 2

)
+2arσ 2

]2

+4arσ 2

⎤⎦.

The optimal initial pd
0 = Bd

Ad follows easily from the first-order equation.
The incentive, as a function of information rent pt , is

βd
t =

1+pt −V d
p φ

1+arσ 2
=

1+Adφ

1+arσ 2
pt .

Using Equation (35), we can derive the evolution of information rent pt to be

dpd
t

pd
t

=(φ+r)dt − βd
t

pt

φdt =

(
φ+r− 1+Adφ

1+arσ 2
φ

)
dt ≡−λdt.

To show that λ= 1+Adφ

1+arσ2 φ−(φ+r)>0, it is equivalent to show that Ad >
(

1+ r
φ

)
arσ2

φ
+ r

φ2 , which

always holds by Lemma A.2 in the companion Internet Appendix. Finally, the optimal effort can
be calculated as μd

t =βd
t −pd

t .

A.11 Proof for Proposition 5
Suppose along the equilibrium path the agent’s continuation payoff is vt . Similar to Equation (12),
we want to show that dvt =−arvtβt (dYt −μt −mtdt) where βt is the short-term incentive slope
offered along the equilibrium path. Because the agent’s future rents are always zero (principals have
all the bargaining power), it is easy to show that under the optimal saving policy the private saving
balance follows St =− 1

ar
ln(−arvt ) with consumption policy ct =g(μt )− 1

a
ln(−arvt ). Because

the principal has all the bargaining power, the fixed wage αt satisfies

αt =g(μ̂t )+
1

2
arσ 2β2

t . (A31)

Intuitively, the principal reimburses the agent’s effort cost
μ̂2

t
2 , and compensates the risk premium

1
2 arσ 2β2

t borne by the agent; they are just enough to convince the agent to take the offer. Then, in
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equilibrium, μt = μ̂t and the agent’s budget constraint reads

dSt = rSt dt −ct dt +αtdt +βt (dYt −μt −mtdt)

=
1

2
arσ 2β2

t dt +βt (dYt −μt −mtdt).

Since vt =− 1
ar

exp(−arSt ), using Ito’s lemma we have

dvt =exp(−arSt )dSt +
ar

2
exp(−arSt )(dSt )

2 =−arvtβt (dYt −μt −mtdt).

Thus, the agent’s continuation value process is identical to Equation (12). This also verifies that αt

in Equation (A31) is the minimum fixed wage needed to attract the agent.
Proposition 1 implies that the agent’s incentive compatibility constraint satisfies

μt =βt −Et

[∫ ∞

t

φβse
−(φ+r)(s−t) exp

(
−
∫ s

t

arβuσdBu − 1

2

∫ s

t

a2r2β2
uσ 2du

)
ds

]
=βt −pt .

Importantly, because the principal t takes future βt+s as given, the principal t is taking pt as given
and choosing βt to maximize

Et [dYt ]/dt −Et [αtdt −βt (dYt −μtdt −mtdt)]/dt

=μt +mt −αt =(βt −pt )+mt −g(βt −pt )− 1

2
arσ 2β2

t .

Hence, the first-order condition for the optimal incentive βt is 1−(βt −pt )−arσ 2βt =0, which
implies that

βt =
1+pt

1+arσ 2
.

We will see that this optimality condition does not hold in the long-term contracting case.
Conjecture that βt =βST and pt =pST are constants (we will verify this property shortly.) Then,

since pST = φ
φ+r

βST ,

βST =
φ+r

r +arσ 2 (φ+r)
,pST =

φ

r +arσ 2 (φ+r)
,

and the equilibrium effort is

μST =βST −pST =
r

r +arσ 2 (φ+r)
.

Now let us rule out the case of timing-varying β. Recall that the feasible set of βt is bounded
by [−M,M]. Define β ≡sup{βt }∈ [−M,M]. The optimality of short-term incentive implies that
there exists t , so that pt =

(
1+arσ 2

)
β−1−ε for some sufficiently small ε. However, similar to

the argument in Lemma 3, pt ≤ φ
φ+r

β, which implies(
1+arσ 2

)
β−1−ε≤ φ

φ+r
β ⇒

(
r

φ+r
+arσ 2

)
β ≤1+ε. (A32)

Similarly, define β ≡ inf {βt }∈ [−M,M], and we will have(
1+arσ 2

)
β−1+ε≥ φ

φ+r
β ⇒−

(
r

φ+r
+arσ 2

)
β ≤−1+ε. (A33)

Summing Equations (A32) and (A33), we have

β−β ≤ 2ε
r

φ+r
+arσ 2

.

Since ε is arbitrarily small, it must be β =β, and βt is constant. Q.E.D.
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