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We develop a specification test and a sequence of model selection procedures for non-

nested, overlapping, and nested models based on the second Hansen-Jagannathan

distance, which requires a good asset pricing model to not only have small pricing

errors but also be arbitrage free. Our methods have reasonably good finite sample

performances and are more powerful than existing ones in detecting misspecified

models with small pricing errors but are not arbitrage-free and in differentiating models

that have similar pricing errors of a given set of test assets. Using the Fama and French

size and book-to-market portfolios, we reach dramatically different conclusions on

model performances based on our approach and existing methods.
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1. Introduction

The fundamental theorem of asset pricing, one of
the cornerstones of neoclassical finance, establishes the
equivalence between the absence of arbitrage and
the existence of a positive stochastic discount factor
(SDF) that correctly prices all assets.1 The main purpose of
this paper is to develop asset pricing tests that fully reflect
the implications of the fundamental theorem of asset
pricing. Specifically, we develop a systematic approach for
estimating, testing, and comparing asset pricing models
based on the second Hansen-Jagannathan distance (HJD).
1 See Ross (2005) for a recent review of neoclassical finance. See

Cochrane (2005) for a comprehensive treatment of both theoretical and

empirical asset pricing based on the SDF approach and all the related

references.

www.elsevier.com/locate/jfec
dx.doi.org/10.1016/j.jfineco.2010.03.002
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The first and second HJDs developed by Hansen and
Jagannathan (1991, 1997) measure specification errors
of SDF models by least squares distances between an
SDF model and the set of admissible SDFs that can
correctly price a set of test assets.2 The first HJD considers
the set of all admissible SDFs, which we denote as M.
The second HJD considers only the smaller set of strictly
positive admissible SDFs, which we denote as Mþ .
The positivity constraint of the second HJD guarantees
the admissible SDFs to be arbitrage-free and is important
for pricing derivatives associated with the test assets.
Hansen and Jagannathan (1997) show that, while the
first HJD represents the maximum pricing error of a
portfolio of the test assets with a unit norm, the second
HJD represents the minimax bound of the pricing errors
of a portfolio of both the test assets and their
related derivatives with a unit norm. The second HJD
represents a more stringent criterion for evaluating
asset pricing models and is generally larger than the first
HJD.

Using the second HJD in evaluating asset pricing
models has an important advantage, although the existing
empirical literature has mainly focused on the first HJD.3

Conceptually, the second HJD reflects more fully the
implications of the fundamental theorem of asset pricing
than the first HJD. While the first HJD tests only whether
an SDF model can correctly price the test assets, the
second HJD further tests whether the SDF model is strictly
positive. As a result, the second HJD is more powerful than
the first HJD in detecting misspecified SDF models that
can price the test assets but are not strictly positive, a
situation that is especially likely to happen to linear factor
models.

Dybvig and Ingersoll (1982) show that linear asset
pricing models are not arbitrage-free and are not appro-
priate for pricing derivatives because their SDFs take
negative values in certain states of the world. Although
linear factor models are seldom used directly to price
derivatives, they have been widely used in performance
evaluation of mutual funds and hedge funds. Mutual
funds and hedge funds often employ dynamic trading
strategies that generate option-like payoffs.4 Most hedge
funds directly trade derivatives, and their returns exhibit
option-like features.5 Grinblatt and Titman (1989), Glos-
ten and Jagannathan (1994), Ferson and Khang (2002),
and Ferson, Henry and Kisgen (2006), among others,
emphasize the importance of the positivity constraint for
mutual fund performance evaluation. The fast-growing
2 Following Hansen and Jagannathan (1997), we refer to admissible

models as models that can correctly price the set of test assets.
3 Studies that use the first HJD are Jagannathan and Wang (1996),

Jagannathan, Kubota and Takehara (1998), Campbell and Cochrane

(2000), Lettau and Ludvigson (2001), Hodrick and Zhang (2001), Dittmar

(2002), and Kan and Zhou (2002), among others.
4 See Merton (1981), Dybvig and Ross (1985), and others for more

detailed discussions on this issue.
5 TASS, a hedge fund research company, reports that more than 50%

of the four thousand hedge funds it follows use derivatives. Fung and

Hsieh (2001), Agarwal and Naik (2004), Ben Dor and Jagannathan (2002),

and Mitchell and Pulvino (2001) show option-like features in hedge fund

returns.
hedge fund industry and the need to evaluate hedge fund
performances further highlight the significance of the
second HJD for empirical asset pricing studies.

Even for applications that do not involve derivatives,
using the second HJD for estimating and comparing asset
pricing models can still be beneficial. For example, one is
likely to obtain more robust and reliable parameter
estimates using the second HJD than the first HJD,
especially for linear factor models. The first HJD chooses
the parameters of a linear model to minimize the pricing
errors of the test assets. However, such estimated models
could be far from Mþ , because in many cases the
estimated SDF models have to take negative values with
high probabilities to price the test assets. Therefore,
models estimated using the first HJD are likely to overfit
the test assets and to perform poorly out of sample. The
second HJD helps to overcome the overfitting problem
because it chooses parameters to minimize the distance
between an SDF model and Mþ . As a result, the second
HJD provides more realistic assessments of model perfor-
mance and leads to estimated SDF models that are closer
to Mþ .

Moreover, the second HJD is more powerful than the
first HJD in distinguishing the relative performances
of models that have small pricing errors of the same
set of test assets. According to Lewellen, Nagel, and
Shanken (LNS, 2010), it is difficult to differentiate models
that have been developed to explain the cross-sectional
returns of the 25 size and book-to-market (BM) portfolios
of Fama and French (1993) using traditional methods,
because these models tend to have small pricing errors for
the test assets by construction. While LNS (2010) suggest
several interesting ways to improve the traditional
methods, the second HJD represents a powerful measure
of relative model performances. SDF models with
similar pricing errors for the Fama and French portfolios
could have very different probabilities in taking negative
values and thus can be differentiated based on the second
HJD. In addition, because the second HJD measures the
distance between an SDF model andMþ , a model with a
smaller second HJD is likely to be a better model. Given
that most asset pricing models are approximations
of reality and likely to be misspecified, it is important
to have a powerful measure such as the second HJD
to compare the relative performances of misspecified
models.

Despite its many advantages, the second HJD has been
rarely used in the existing literature. One main reason is
that econometric analysis of the second HJD is much more
difficult than that of the first HJD. Standard asymptotic
analysis involves a Taylor series approximation of the
second HJD near true parameter values. This procedure,
however, breaks down for the second HJD, which involves
a function that is not differentiable with respect to model
parameters in the traditional sense. As a result, the
standard econometric techniques used in Jagannathan
and Wang (1996) for analyzing the first HJD cannot be
applied to the second HJD.

To fully exploit the theoretical advantages of the
second HJD for empirical asset pricing studies, we develop
a systematic approach for evaluating asset pricing models
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based on the second HJD and apply the new approach
to empirical applications using the Fama and French 25
size/BM portfolios. By doing so, our paper makes the
following methodological and empirical contributions to
the existing literature.

First, we overcome the nondifferentiability issue of the
second HJD by introducing the concept of differentiability
in quadratic mean of Le Cam (1986), Pollard (1982), and
Pakes and Pollard (1989). In particular, we develop a
second-order stochastic representation of the second HJD
based on the new concept of differentiation under general
conditions (i.e., the SDF model can be either correctly
specified or misspecified). The second-order stochastic
representation forms the foundation of our econometric
analysis of the specification test and model selection
procedures based on the second HJD.

Second, we develop the asymptotic distribution of the
second HJD under the null hypothesis of a correctly
specified model, which has not been formally developed
in the literature. The new asymptotic distribution makes
it possible to conduct specification tests of SDF models
based on the second HJD and to identify misspecified
models that cannot be identified by the first HJD. We also
develop the asymptotic distribution of model parameters,
which provide diagnostic information on potential
sources of model misspecifications.

Third, we develop a sequence of model selection
procedures in the spirit of Vuong (1989) for non-nested,
overlapping, and nested models based on the second HJD.
Given that most asset pricing models are likely to
be misspecified, it is also very important to compare
the degrees of misspecifications of different models. We
compare the relative performances of two models based
on the asymptotic distribution of the difference between
the second HJDs of the two models. One challenging
aspect of the analysis is that the difference could have
either normal or weighted w2 asymptotic distributions
depending on the structures of the two models. Our
model selection procedures represent probably the first
attempt to formally compare the relative performances of
asset pricing models based on the second HJD. Simulation
evidence shows that both the specification test and model
selection tests have reasonably good finite sample
performances for sample sizes typically considered in
the existing literature.

Finally, we demonstrate the advantages of the second
HJD through empirical applications, in which we reach
dramatically different conclusions on model perfor-
mances based on our approach and existing methods. In
particular, we evaluate several well-known asset pricing
models that have been developed in the literature to
explain the cross-sectional returns of the Fama and French
25 portfolios (the same set of models considered in LNS,
2010). Though certain models appear to have good
performances in pricing the Fama and French portfolios
according to the first HJD, their SDFs take negative values
with high probabilities and are overwhelmingly rejected
by the second HJD. The second HJD is also more powerful
than the first HJD in distinguishing models that have
similar pricing errors of the test assets but are not
arbitrage-free.
Our paper extends Hansen, Heaton, and Luttmer (HHL,
1995) and Hansen and Jagannathan (1997) in important
ways. Both papers show that the second HJD follows an
asymptotic normal distribution under the null hypothesis
that a given SDF model is misspecified. Their results,
however, cannot be applied to our setting for at least two
reasons. First, their asymptotic distribution becomes
degenerate under the null hypothesis of a correctly
specified model and therefore cannot be used for
specification test. Second, their results cannot be used
for formal model comparison, because they do not provide
the distribution of the difference between the second
HJDs of two models. One might be tempted to conclude
that the difference between the two second HJDs should
follow a normal distribution as well. Our model selection
tests reveal the full complexities of the issue: the
difference could follow either normal or weighted w2

distributions depending on model structures. Therefore,
while Hansen and Jagannathan (1997) introduce the
second HJD as an important theoretical measure of
specification errors, our model selection procedures make
it possible to formally compare the relative performances
of misspecified models based on the second HJD in
empirical studies.

Our paper is also related to Wang and Zhang (2005),
one of the first papers after Hansen and Jagannathan
(1997) that seriously studies the second HJD. Wang and
Zhang (2005) develop a simulation-based Bayesian
approach for inferences of the second HJD. Based on
Markov Chain Monte Carlo simulation and additional
assumptions on the data-generating process, they are able
to obtain the posterior distribution of the second HJD and
to demonstrate that the second HJD can make big
differences in empirical analysis of asset pricing models.
The Bayesian methodology of Wang and Zhang (2005),
though a nice contribution to the literature, is very
different from traditional methods in the literature, such
as the generalized method of moments (GMM) test of
Hansen (1982) or the Jagannathan and Wang (1996) test.
In contrast, our paper provides a systematic approach for
evaluating asset pricing models based on the second HJD
within the established econometric framework in the
existing literature.

Our model selection procedures differ from that of
Vuong (1989) in several aspects. While Vuong (1989)
compares relative model performance based on the
Kullback and Leibler information criterion, a statistical
measure, we compare model performance based on the
second HJD, an economic criterion. Whereas Vuong
(1989) considers only smooth likelihood functions, we
have to deal with the nondifferentiability issue of the
second HJD.

The rest of this paper is organized as follows. In
Section 2, we discuss the advantages of the second HJD in
evaluating asset pricing models. Section 3 develops a
specification test and a sequence of model selection tests
based on the second HJD. Section 4 provides simulation
evidence on the finite sample performances of the new
asset pricing tests. Section 5 contains the empirical
results. Section 6 concludes, and the Appendix provides
the mathematical proofs.
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2. Advantages of the second HJD in evaluating asset
pricing models

In this section, we first provide a brief introduction to
the two HJDs. Then we discuss the advantages of using the
second HJD as a criterion for evaluating asset pricing
models.6

Let the uncertainty of the economy be described by a
filtered probability space ðO,F ,P,ðF tÞtZ0Þ for t=0,1,y,T.
Suppose we use n test assets with payoffs Yt (an n� 1
vector) at t in an empirical analysis of asset pricing
models. Denote Y , a subspace of L2, as the payoff space of
all the test assets. In the absence of arbitrage, there must
exist a strictly positive SDF that correctly prices all the
test assets. That is, for all t, we have

E½mtþ1Ytþ1jF t� ¼ Xt , mtþ140, 8Ytþ1 2 Y , ð1Þ

where Xt, an n� 1 vector, represents the prices of the n

assets at t. The random variable mt +1 discounts payoffs at
t+1 state by state to yield price at t and hence is called a
stochastic discount factor. If the market is complete, then
mt+ 1 is unique. Otherwise multiple mt +1 satisfy Eq. (1).
Without loss of generality, for the rest of the paper, we
focus our discussions on the unconditional version of the
above pricing equation.7 That is,

E½mtþ1Ytþ1� ¼ E½Xt�, mtþ140, 8Ytþ1 2 Y : ð2Þ

In an important paper, Hansen and Jagannathan (1997)
develop two measures of specification errors of SDF
models. The first HJD, denoted as d, measures the least
squares distance or the L2-norm between a candidate SDF
model H and M. That is,

d¼min
m2M

JH�mJ¼min
m2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðH�mÞ2

q
, ð3Þ

where M¼ fmtþ1 : E½mtþ1Ytþ1� ¼ E½Xt� for 8Ytþ1 2 Y g de-
notes the set of all admissible SDFs. The second HJD,
denoted as dþ , is defined as

dþ ¼ min
m2Mþ

JH�mJ¼ min
m2Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðH�mÞ2

q
, ð4Þ

where Mþ¼fmtþ1 : E½mtþ1Ytþ1�¼E½Xt �,mtþ140,8Ytþ12 Y g

denotes the set of positive SDFs. In general, the second
HJD is bigger than the first one, becauseMþ is a subset of
M. Often the SDF model H depends on some unknown
parameters g, and the two distances are defined as

dðgÞ ¼min
g

min
m2M

JHðgÞ�mJ¼min
g

min
m2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðHðgÞ�mÞ2

q
ð5Þ

and

dþ ðgÞ ¼min
g

min
m2Mþ

JHðgÞ�mJ¼min
g

min
m2Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðHðgÞ�mÞ2

q
:

ð6Þ
6 The discussions in this section draw materials from Cochrane

(2005), Dybvig and Ingersoll (1982), Hansen and Jagannathan (1997),

and Wang and Zhang (2005).
7 If we include enough scaled payoffs in our analysis, the uncondi-

tional pricing equation becomes the conditional pricing equation. For

notational convenience, we omit time subscripts t whenever the

meaning is obvious.
In addition to interpretations as least squares distances,
the two HJDs have interpretations as pricing errors. Hansen
and Jagannathan (1997) show that the first HJD has an
interpretation as the maximum pricing error of a portfolio
of the test assets with a unit norm, i.e.,

d¼ max
JYJ ¼ 1

jEðmYÞ�EðHYÞj, 8Y 2 Y : ð7Þ

Hansen and Jagannathan (1997) also show that the second
HJD has an interpretation as the minimax bound on pricing
errors of any payoff in L2 with a unit norm, i.e.,

dþ ¼ min
m2Mþ

max
JYJ ¼ 1

jEðmYÞ�EðHYÞj, 8Y 2 L2: ð8Þ

While d considers only pricing errors of the test assets, dþ

considers pricing errors of both the test assets and payoffs
that are not in Y but in L2, which are derivatives that can be
constructed from trading the test assets. Therefore, the
positivity constraint on m in the definition of the second
HJD is closely related to derivatives pricing: Only a strictly
positive m is arbitrage-free and can price both the test
assets and their related derivatives.

Fig. 1 provides a graphical illustration of the
differences between the two HJDs in a one-period, two-
state economy. The horizontal (vertical) axis represents
payoffs when state one (two) occurs at the end of the
period. The straight line going through the origin
represents the payoff space of the test assets Y . Let Y*

represent the SDF that is in the payoff space Y and can
correctly price all the test assets.8 ThenM is represented
by the straight (dot-dash) line that intersects with Y at Y*

and is orthogonal to Y (the thin line), and Mþ is
represented by the segment of M that is in the first
quadrant (the thick line). Suppose HðgÞ is an SDF model
that we want to evaluate. The dotted line represents dðgÞ,
the shortest distance between HðgÞ and M, the dashed
line represents dþ ðgÞ, the shortest distance between HðgÞ
and Mþ .9 One can reach very different conclusions on
model performances and obtain very different parameter
estimates using the two HJDs. While the first HJD chooses
g to minimize dðgÞ, the second HJD chooses g to minimize
dþ ðgÞ. Therefore, certain models might have large second
HJDs, even though they have small first HJDs.

The second HJD, as a criterion for evaluating asset
pricing models, reflects more fully the implications of the
fundamental theorem of asset pricing and therefore is
more powerful in detecting misspecified models than the
first HJD. While the first HJD requires only that m

correctly prices all the test assets, the second HJD imposes
the additional restriction of m40. As a result, the second
HJD can detect misspecified SDF models that can price the
test assets but are not strictly positive, a situation that is
especially likely to happen to linear factor models.

The second HJD also leads to more reliable and
economically more meaningful parameter estimates than
the first HJD, especially for linear factor models. Consider
8 By the law of one price, Y* always exists, and Y� þe 2M, 8 e ? Y .
9 Rigorously speaking, the solution to minm2Mþ

JH�mJ does not

exist in our simple example, because Mþ is not closed. To avoid this

technical issue, we can re-define Mþ as the set of non-negative

admissible SDFs following Hansen and Jagannathan (1997).
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S=1

S=2

Payoff space of primary assets Y

H(γ)

M: Set of admissible SDFs 

M+: Set of positive admissible SDFs 

δ(γ)

δ+(γ)

Y*

Fig. 1. The first and second Hansen-Jagannathan distances in a one-period, two-state economy. This graph illustrates the difference between the first and

second HJDs in a one-period, two-state (S=1 or 2) economy. The stochastic discount factor is denoted by HðgÞ. The dot-dash line represents the setM of

admissible stochastic discount factors (SDFs) that can correctly price the primary assets. The Solid thick line segment represents the setMþ of admissible

positive SDFs that can correctly price the primary assets. The dotted line segment represents the first HJD dðgÞ, while the dash line segment represents the

second HJD dþ ðgÞ. Y* represents the SDF that is in the payoff space Y and can correctly price all test assets.
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a linear factor model HðgÞ in Fig. 1. If we choose g to
minimize the first HJD, the estimated model HðĝÞ could be
far away from Mþ even though the estimated pricing
errors for the test assets are small. This is because in many
cases the small pricing errors are obtained at the expense
of the estimated model HðĝÞ taking negative values with
high probabilities. As a result, the estimated model tends
to overfit the test assets and is likely to perform poorly
out of sample. In contrast, the second HJD mitigates the
overfitting problem by choosing g such that HðgÞ is as
close as possible to Mþ . Therefore, although it could
appear that the second HJD unfairly punishes SDF models
that can price the test assets well but are not strictly
positive, the second HJD provides more realistic assess-
ments of the performances of such models and leads to
estimated SDF models that are closer to Mþ .

The second HJD is a powerful measure of relative
performances of misspecified SDF models and helps
discriminate models that cannot be distinguished by the
first HJD. For example, many models have been proposed
in the literature to explain the cross-sectional returns of
the Fama and French size/BM portfolios. LNS (2010) point
out that because these models tend to have small pricing
errors for the test assets by construction, it is very difficult
to differentiate them using traditional methods, which
mainly focus on pricing errors for model evaluation.
Because the second HJD measures the distance between
an SDF model andMþ , models with similar pricing errors
for the Fama and French portfolios could have very
different probabilities of taking negative values and thus
can be differentiated based on the second HJD. Given that
most linear factor models are misspecified, the ability to
compare relative model performances using the second
HJD is one of its important advantages for empirical asset
pricing studies.
10 For more detailed discussions on the conjugate representation of

the second HJD, see Hansen and Jagannathan (1997). Replacing ½H�l0Y�þ

by ½H�l0Y� in Eq. (9), then Eq. (9) becomes the definition of ½d�2, and our

entire analysis for the second HJD can be easily adapted to the first HJD.
3. Asset pricing tests based on the second HJD

In this section, we first develop a second-order
asymptotic representation of the second HJD, which forms
the foundation of our econometric analysis of the second
HJD. Then we develop the asymptotic distribution of the
second HJD under the null hypothesis of a correctly
specified model, which can be used for specification tests
of SDF models. Finally, we develop a sequence of model
selection procedures in the spirit of Vuong (1989), which
can compare the relative performances of SDF models
based on the second HJD regardless whether the models
are correctly specified or not.

3.1. Nondifferentiability and asymptotic representation

of the second HJD

One technical difficulty we face in econometric
analysis of the second HJD is that the second HJD involves
a nonsmooth function that is not pointwise differentiable.
We overcome this difficulty by introducing the concept of
differentiability in quadratic mean which has been used in
statistics and econometrics literature in dealing with
nonsmooth objective functions. Based on the new concept
of differentiation, we develop an asymptotic representa-
tion of the second HJD.

Following Hansen and Jagannathan (1997), our econo-
metric analysis of the second HJD focuses on the conjugate
representation of the minimization problem in Eq. (4):

½dþ �2 ¼max
l
fEH2�E½H�l0Y �þ2�2l0EXg, ð9Þ

where l is an n� 1 vector of Lagrangian multipliers of the
constraint that m has to be admissible in Eq. (4), and
½H�l0Y �þ ¼max½0,H�l0Y �.10 The first-order condition of
the above optimization problem is given as

EX�E½ðH�l0YÞþY � ¼ 0: ð10Þ

Suppose l0 solves Eq. (10), then ½H�l00Y�þ 2Mþ . That is,
H�½H�l00Y �þ is the necessary adjustment of H so that it
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becomes a member ofMþ .11 For SDF models that depend
on unknown model parameters g, the second HJD is
defined as

½dþ �2 ¼min
g

max
l

EfðyÞ, ð11Þ

where y¼ ðg,lÞ and fðyÞ �HðgÞ2�½HðgÞ�l0Y �þ2�2l0X.
Suppose we have the following time series observa-

tions of asset prices, payoffs, and an SDF model,
fðXt�1,Yt,HtðgÞÞ : t¼ 1,2, . . . ,Tg, where g is a k� 1 vector of
model parameters. Following Hansen and Jagannathan
(1997), we use the empirical counterpart of EfðyÞ ¼
Efðg,lÞ,

ETfðyÞ ¼
1

T

XT

t ¼ 1

fHtðgÞ2�½HtðgÞ�l0Yt�
þ2�2l0Xt�1g, ð12Þ

in our econometric analysis of the second HJD, where
ET ½x� ¼ ð1=TÞ

PT
t ¼ 1 xt .

12 Therefore, the main objective of
our asymptotic analysis is to characterize as T-1 the
behavior of

½dþT �
2 ¼min

g
max

l
ETfðyÞ: ð13Þ

The standard approach for asymptotic analysis of
ETfðyÞ is to employ a pointwise quadratic Taylor
expansion of the function fðyÞ with respect to y around
true model parameters y0, where y0 ¼ ðg0,l0Þ �

arg ming maxlEfðg,lÞ. That is,

fðyÞ ¼fðy0Þþ
@fðy0Þ

@y0

�ðy�y0Þþ
1
2ðy�y0Þ

0
�
@2fðy0Þ

@y@y0
� ðy�y0ÞþoðJy�y0J

2
Þ,

ð14Þ

and then optimize the resulting quadratic representation
with respect to y:

ETfðyÞ ¼ ETfðy0ÞþET
@fðy0Þ

@y0

�ðy�y0Þþ
1
2ðy�y0Þ

0
� ET

@2fðy0Þ

@y@y0

�ðy�y0ÞþopðJy�y0J
2
Þ: ð15Þ

However, standard Taylor expansion breaks down in
our case because the function fðyÞ is not pointwise
differentiable. To better illustrate this point, observe that
fðyÞ can be written as

fðyÞ �HðgÞ2�gðHðgÞ�l0YÞ�2l0X, ð16Þ

where gðxÞ ¼ ½maxðx,0Þ�2 � ½xþ �2. Observe that g(x) is first-
order differentiable everywhere with first-order derivative

gð1ÞðxÞ ¼ 2½x�þ ¼
2x if xZ0,

0 if xo0:

(
ð17Þ
11 Replacing ½H�l0Y�þ by ½H�l0Y �, the adjustment term H�½H�l0Y �þ

simplifies to l00Y . That is, the random variable l00Y represents the

necessary adjustment of H so that it is a member ofM. Alternatively, l00Y

can be used to discount future payoffs state by state to yield current

pricing errors of Y : E½ðl00YÞY� ¼ E½ðH�mÞY �, where m 2M. Therefore,

while d measures average deviations of H from M, l00Y measures H’s

deviations from M in different states of the economy.
12 For notational convenience, we suppress the dependence of fðyÞ

on t.
However, g(x) does not have a second-order derivative at
x=0, i.e., g(1) is no longer differentiable everywhere. The
second-order derivative of g(x) equals

gð2ÞðxÞ ¼

2 if x40,

not exist if x¼ 0,

0 xo0:

8><
>: ð18Þ

Therefore, for dþT , the function ½HtðgÞ�l0Yt �
þ is not

pointwise differentiable with respect to ðg,lÞ for all HtðgÞ
and Yt.

13 That is, for a given ðg,lÞ, there are combinations
of HtðgÞ and Yt such that HtðgÞ�l0Yt ¼ 0, which is the kink
point of ½HtðgÞ�l0Yt�

þ . As a result, the derivatives of fðg,lÞ
with respect to ðg,lÞ are not always well defined for those
HtðgÞ and Yt.

The key to overcome this difficulty is that pointwise
differentiability is not a necessary condition to obtain
Eq. (15). All we need is a good approximation to ETfðyÞ
[but not fðyÞ itself] around the true parameter value y0.
To this end, the notion of differentiability in quadratic
mean in modern statistics (cf. Le Cam, 1986) plays an
important role.14 In contrast to pointwise differentiability,
which implies a good approximation to fðyÞ for all Ht and
Yt, differentiability in quadratic mean implies that the
error of approximating ETfðyÞ is negligible in quadratic
mean or L2(P) norm. In other words, all we need is an
approximation of fðyÞ that works well in an average
sense. For further discussions of nondifferentiability
issues, see Pollard (1982) and Pakes and Pollard (1989),
among others.

Our approach can be briefly described as follows and is
along the lines of Pollard (1982). First, we decompose
ETfðyÞ into a deterministic component and a (centered)
random component

ETfðyÞ ¼ EfðyÞþðET�EÞfðyÞ, ð19Þ

where ðET�EÞ½�� ¼ ET ½���E½��. To obtain a quadratic repre-
sentation such as Eq. (15), we consider a second-order
approximation to the deterministic term EfðyÞ and a first-
order approximation to the random component
ðET�EÞfðyÞ. We consider a lower-order approximation of
the random component, because it is centered and thus in
general one order smaller than the deterministic compo-
nent. The above analysis leads to Lemma 1, which justifies
a local asymptotic quadratic (LAQ) representation of
ETfðyÞ.

Lemma 1. Suppose Assumptions A.1 to A.7 in the Appendix

hold. Then the following LAQ representation holds for ETfðyÞ
around y0:

ETfðyÞ ¼ Efðy0ÞþðET�EÞfðy0ÞþA0ðy�y0Þ

þ1
2ðy�y0Þ

0Gðy�y0ÞþoðJy�y0J
2
ÞþopðJy�y0JT�1=2Þ,

ð20Þ
13 Let o be a random variable. A function f ðy,oÞ is pointwise

differentiable with respect to y if the function has partial derivatives

with respect to y in the classical sense for all possible values of o.
14 A function f ðy,oÞ is differentiable in quadratic mean with respect

to y at y0 if there exists a DðoÞ in L2 such that E½ðf ðy,oÞ�
f ðy0 ,oÞÞ=ðy�y0Þ�DðoÞ�2-0 as y-y0. Similar ideas have been used by

Pakes and Pollard (1989) and others to handle nondifferentiable criteria

functions.
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15 Proposition 1 can be greatly simplified under H0: dþ ¼ 0, even

though it holds whether the model is correctly specified or not. The

limiting normal distribution could be degenerate.
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where A� ðET�EÞ@fðy0Þ=@y and

G� E
@2fðy0Þ

@y@y0
¼

E
@2fðy0Þ

@g@g0 E
@2fðy0Þ

@g@l0

E
@2fðy0Þ

@l@g0 E
@2fðy0Þ

@l@l0

0
BBBB@

1
CCCCA¼

G11 G12

G21 G22

 !
:

Proof. See the Appendix.

We emphasize that the expectation of the second
derivative is always well defined, even though the second
derivative is well defined except on a set of zero
probability. The first-order derivative for the determinis-
tic term does not appear in Eq. (20), i.e., E@fðy0Þ=@y¼ 0,
because y0 ¼ ðg0,l0Þ solves the population optimization
problem ming maxl EfðyÞ. Compared with traditional
Taylor expansions, the key point here is to justify that
we can still use the second derivatives of f (which are not
defined everywhere) to obtain an approximation to EfðyÞ.

Based on the LAQ representation of ETfðyÞ in Lemma 1,
we can solve for the minimax problem by first maximizing
the objective function over l for a given value of g, then
minimizing the objective function over g. As a result, we
obtain the following asymptotic representation of the
second HJD.

Lemma 2. Suppose Assumptions A.1 to A.9 in the Appendix

hold. Then we have the following second-order asymptotic

representation of the second HJD at estimated model

parameter ŷ:

½d̂
þ

T �
2 ¼min

g
max

l
ETfðyÞ ¼ Efðy0ÞþðET�EÞfðy0Þ

�1
2A0G�1AþopðT

�1Þ: ð21Þ

Moreover, the optimizer ŷ ¼ ðĝ,l̂Þ � arg ming maxlETfðyÞ
equals

ŷ ¼ y0�G�1AþopðT
�1=2Þ, ð22Þ

where A and G are defined in Lemma 1.

Proof. See the Appendix.

Therefore, the technique of differentiation in quadratic
mean overcomes the nondifferentiability issue of the
second HJD and makes asymptotic analysis of the second
HJD feasible. In particular, our analyses on specification
test and model selection procedures in later sections are
all based on the second-order asymptotic representation
of the second HJD in Lemma 2.

3.2. Specification test based on the second HJD

In this subsection, based on the representation of d̂
þ

T in
Lemma 2, we develop the asymptotic distributions of the
second HJD and parameter estimate ŷ under the null
hypothesis of a correctly specified model. We first discuss
the intuition behind our asymptotic analysis and then
present the formal results in Theorem 1 and Proposition 1.
We also discuss the relations between our results and
those in the existing literature.

Lemma 2 suggests that the behavior of d̂
þ

T is
determined by three terms: Efðy0Þ, ðET�EÞfðy0Þ, and the
quadratic form 1
2 A0G�1A. Under the null hypothesis H0:

dþ ¼ 0, Efðy0Þ ¼ 0 by definition. Because fðy0Þ is
non-negative, we must have fðy0Þ ¼ 0 almost everywhere
to have Efðy0Þ ¼ 0. As a result, we must have
ðET�EÞfðy0Þ ¼ 0 as well. Therefore, under H0: dþ ¼ 0,
the asymptotic behavior of d̂

þ

T is mainly determined by
the quadratic form. From Assumption A.9, we haveffiffiffi

T
p

A¼
ffiffiffi
T
p
ðET�EÞ

@fðy0Þ

@y
*Nð0,LÞ, ð23Þ

where * means convergence in distribution and
L¼ E½@fðy0Þ=@y � @fðy0Þ=@y

0
�. Therefore, T½d̂

þ

T �
2 should

follow a weighted w2 distribution.

Theorem 1 (Specification test). Suppose Assumptions A.1
to A.9 in the Appendix hold. Then under H0: dþ ¼ 0, T½d̂

þ

T �
2

has an asymptotic weighted w2 distribution, and the weights

are the eigenvalues of the matrix

�1
2½G
�1
22�G

�1
22 G21½G12G�1

22 G21�
�1G12G�1

22 �Ll, ð24Þ

where G12, G21, and G22 are defined in Lemma 1 and

Ll ¼ E½@fðy0Þ=@l � @fðy0Þ=@l
0
�.

Proof. See the Appendix.

We can use Theorem 1 to conduct specification tests of
SDF models based on the second HJD. Next we develop the
asymptotic distribution of ŷ ¼ ðĝ,l̂Þ, which contains
important diagnostic information on potential sources of
model misspecifications.

Proposition 1 (Parameter estimation). Suppose Assump-

tions A.1 to A.9 in the Appendix hold. Then the estimator

of model parameters, ĝ, has the following asymptotic

distribution:ffiffiffi
T
p
ðĝ�g0Þ*Nð0,ðJ11 J12ÞLðJ11 J12Þ

0
Þ; ð25Þ

and the estimator of Lagrangian multipliers, l̂, has the

asymptotic distributionffiffiffi
T
p
ðl̂�l0Þ*Nð0,ðJ21 J22ÞLðJ21 J22Þ

0
Þ, ð26Þ

where

J11 J12

J21 J22

 !
¼

G11 G12

G21 G22

 !�1

and Gij’s (i,j=1,2) are defined in Lemma 1.

Proof. See the Appendix.15

For a linear SDF model, we can examine the importance of
a specific factor by testing whether the coefficient of the
factor is significantly different from zero using Proposition 1.
The Lagrangian multipliers suggest directions for model
improvements: If the multiplier of one particular asset is
very large, then the SDF model has to be significantly
modified to correctly price this particular asset.

The specification test in Theorem 1 differs from that of
Jagannathan and Wang (1996), which is based on the first
HJD, in several important ways. First, while Jagannathan
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and Wang (1996) estimate model parameters by
minimizing the first HJD, we estimate model parameters
by minimizing the second HJD. Except for the rare case in
which dþ ¼ 0, the two estimated HJDs and their
associated parameters are generally different from each
other. Second, the two methods have different powers in
rejecting misspecified models with small first HJDs but
large second HJDs. A typical example of such models is
linear SDF models that have to take negative values with
significant probabilities to fit the test assets. While such
models could appear acceptable based on the first HJD,
they could be rejected by the second HJD because they
violate the positivity constraint. Third, while Jagannathan
and Wang (1996) consider only linear factor models, our
result is applicable to nonlinear SDF models in which HðgÞ
depends on g nonlinearly. These include asset pricing
models in which investors have complicated utility
functions. Finally, the econometric techniques used in
our analysis are different from that of Jagannathan and
Wang (1996) and can be useful in other finance applica-
tions that involve nondifferentiable objective functions.

Our results in this section are closely related to that of
HHL (1995) and Hansen and Jagannathan (1997). Both
papers show that the first and second HJDs follow
asymptotic normal distributions for misspecified
models.16 These distributions become degenerate when
the models are correctly specified (i.e., the first or second
HJD is identically zero).17 Hansen and Jagannathan (1997,
p. 576) argue that the first HJD equals zero only when an
SDF model correctly prices all the test assets and one can
test this condition via GMM using the pricing errors of the
test assets as moment conditions. This argument implies
that, even if we were not aware of the asymptotic
distribution of d for correctly specified models, we can
still test H0: d¼ 0 using GMM. It might be tempting to
conclude that a similar result could hold for dþ as well.
However, the second HJD equals zero only when the SDF
model can correctly price all the test assets and their
related derivatives. As a result, to test H0: dþ ¼ 0 using
the GMM approach, we need data on all derivatives that
can be constructed from trading the test assets. Such data
could impossible or at least very difficult to obtain.
Therefore, the asymptotic distribution of the second HJD
in Theorem 1 is essential for testing H0 : d

þ
¼ 0.

3.3. Model selection procedures based on the second HJD

While the specification test can tell whether a given
asset pricing model is correctly specified, most SDF
models in the existing literature are probably misspeci-
fied. In fact, one could argue that linear factor models are
16 We can easily obtain this result from Lemma 2. Under H0: dþa0,

we know that Efðy0Þa0, ðET�EÞfðy0Þa0, and the behavior of d̂
þ

T is

mainly determined by ðET�EÞfðy0Þ instead of the quadratic term. The

second HJD has an asymptotic normal distribution centered at Efðy0Þ,

because by central limit theorem, ðET�EÞfðy0Þ converges to a normal

distribution as T-1.
17 The approach of HHL (1995) and Hansen and Jagannathan (1997)

is equivalent to a first-order Taylor approximation of the second HJD in

our setting. However, a second-order approximation is needed to

develop the asymptotic distribution of the second HJD under H0: dþ ¼ 0.
misspecified by definition because their SDFs can take
negative values with positive probabilities. Therefore,
another important issue is how to compare the relative
performances of potentially misspecified SDF models
using the second HJD. In this subsection, building on the
same technique in developing the specification test, we
develop a sequence of model selection procedures in the
spirit of Vuong (1989). Similar to that of Vuong (1989),
our procedures apply to situations in which both, only
one, or neither of the competing models could be correctly
specified.

Consider two competing models F and G. We are
interested in the following hypotheses:
H0: F and G are equally good, i.e., dþF ¼ dþG ;
HF : F is better than G, i.e., dþF odþG ; and
HG: F is worse than G, i.e., dþF 4dþG .
In empirical studies, model comparison is conducted
using empirical estimates of the second HJDs. Hence, we
propose to test the above hypotheses using the following
test statistic:

½d̂
þ

F �
2�½d̂

þ

G �
2, ð27Þ

where for convenience we denote d̂
þ

F ¼ dþT ðŷF Þ,
d̂
þ

G ¼ dþT ðŷGÞ, ŷF ¼ arg mingF maxlF ETfðyF Þ, and ŷG ¼
arg mingG maxlG ETfðyGÞ. We also define y0F ¼

arg mingF maxlF EfðyF Þ and y0G ¼ arg mingG maxlG EfðyGÞ
as the pseudo-true parameters for models F and G,
respectively. Following the terminology of Vuong (1989),
we say that the two models are observationally equivalent if
fðy0F Þ ¼fðy0GÞ with probability one. For all practical
purposes, observationally equivalent models are not distin-
guishable using any test statistics that are functions of f.

The key to our analysis is to obtain the asymptotic
representation of the difference between the second HJDs
of the two models. From Lemma 2, we know that

½d̂
þ

F �
2 ¼min

gF
max
lF

ETfðyF Þ ¼ Efðy0F Þ

þðET�EÞfðy0F Þ�
1
2A0FG

�1
F AF þopðT

�1Þ ð28Þ

and

½d̂
þ

G �
2 ¼min

gG
max
lG

ETfðyGÞ

¼ Efðy0GÞþðET�EÞfðy0GÞ�
1
2A0GG

�1
G AGþopðT

�1Þ, ð29Þ

where AF � ðET�EÞ@fðy0F Þ=@yF , AG � ðET�EÞ@fðy0GÞ=@yG,
GF � E@2fðy0F Þ=@yF @y

0

F , and GG � E@2fðy0GÞ=@yG@y
0

G. Con-
sequently, we have the following asymptotic representa-
tion of the test statistic for model selection:

½d̂
þ

F �
2�½d̂

þ

G �
2 ¼ Efðy0F Þ�Efðy0GÞþðET�EÞ½fðy0F Þ

�fðy0GÞ��
1
2 A0FG

�1
F AF þ1

2A0GG
�1
G AGþopðT

�1Þ:

ð30Þ

One interesting as well as challenging aspect of our

analysis is that ½d̂
þ

F �
2�½d̂

þ

G �
2 exhibits different asymptotic

distributions depending on whether the two models
are observationally equivalent. If fðy0F Þ ¼fðy0GÞ with
probability one, then under H0: dþF ¼ dþG , we have
Efðy0F Þ�Efðy0GÞ ¼ 0 and ðET�EÞ½fðy0F Þ�fðy0GÞ� ¼ 0. As a
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result, the asymptotic distribution of ½d̂
þ

F �
2�½d̂

þ

G �
2 is

determined by the difference between the two quadratic
forms and follows a weighted w2 distribution. However, if
fðy0F Þafðy0GÞ with positive probability, then under H0:
dþF ¼ dþG , though Efðy0F Þ�Efðy0GÞ ¼ 0, ðET�EÞ½fðy0F Þ�

fðy0GÞ� does not vanish. And the asymptotic distribution

of ½d̂
þ

F �
2�½d̂

þ

G �
2 is determined by ðET�EÞ½fðy0F Þ�fðy0GÞ�,

which follows a normal distribution.
To address this issue, we develop the asymptotic

distributions of ½d̂
þ

F �
2�½d̂

þ

G �
2 for three different types of

model structures of F and G. Specifically, following
the terminology of Vuong (1989), we consider strictly
non-nested, overlapping, and nested models. By
strictly non-nested models, we mean that F yF \ GyG is an
empty set, where F yF and GyG represent the entire families
of models that we can obtain by considering all possible
values of yF and yG in their parameter spaces, respec-
tively. The definition implies that two non-nested models
can never be observationally equivalent. Two models F yF
and GyG are called overlapping if, and only if, F yF \ GyG is
not empty and F yFJGyG and GyGJF yF . Model F yF is said
to be nested by model GyG if, and only if, F yF DGyG .
Overlapping and nested models can be observationally
equivalent for certain parameter values.

We first consider the cases of strictly non-nested and
nested models, for which we know unambiguously
whether the term ðET�EÞ½fðy0F Þ�fðy0GÞ� vanishes under
H0: dþF ¼ dþG . Then we consider the more difficult case of
overlapping models, for which we do not know unam-
biguously whether the term ðET�EÞ½fðy0F Þ�fðy0GÞ�

vanishes under H0: dþF ¼ dþG .
Because strictly non-nested models can never be

observationally equivalent, the term ðET�EÞ½fðy0F Þ

�fðy0GÞ� never vanishes and is the dominating term in
½d̂
þ

F �
2�½d̂

þ

G �
2. As a result, we obtain the following test for

comparing strictly non-nested models based on the
second HJD.

Theorem 2 (Model selection for non-nested models). Sup-

pose models F and G are strictly non-nested and Assump-

tions A.1 to A.10 in the Appendix hold. Then

under H0: dþF ¼ dþG ,
ffiffiffi
T
p
ð½d̂
þ

F �
2�½d̂

þ

G �
2Þ=ŝT*Nð0,1Þ;

under HF : dþF odþG ,
ffiffiffi
T
p
ð½d̂
þ

F �
2�½d̂

þ

G �
2Þ=ŝT-�1; and

under HG: d
þ

F 4dþG ,
ffiffiffi
T
p
ð½d̂
þ

F �
2�½d̂

þ

G �
2Þ=ŝT-þ1,

where ½ŝT �
2 is an estimator of Var½fðy0F Þ�fðy0GÞ� and

equals

½ŝT �
2 ¼ ET ½fðŷF Þ�fðŷGÞ�2�ðET ½fðŷF Þ�fðŷGÞ�Þ2: ð31Þ

Proof. See the Appendix.

Theorem 2 allows us to compare two non-nested SDF
models based on their second HJDs. The implementation
of Theorem 2 involves several steps. First, we solve the
optimization problem in Eq. (13) for F and G to obtain
ŷF ¼ ðĝF ,l̂F Þ and ŷG ¼ ðĝG,l̂GÞ. Then we compute ŝT to

form the statistic
ffiffiffi
T
p
ð½d̂
þ

F �
2�½d̂

þ

G �
2Þ=ŝT . Finally, we make

inferences about the three hypotheses based on the
appropriate critical values of the standard normal dis-
tribution.

Next we consider nested models. Without loss of
generality we assume that model F is nested by model G.
Because the bigger model is always at least as good as
the smaller model (i.e., dþF ZdþG ), under H0: dþF ¼ dþG ,
we must have fðy0F Þ ¼fðy0GÞ with probability one. That
is, the two models must be observationally equivalent
under H0 : dþF ¼ dþG , which in turn implies that

ðET�EÞ½fðy0F Þ�fðy0GÞ� ¼ 0. As a result, ½d̂
þ

F �
2�½d̂

þ

G �
2 is

asymptotically determined by the difference between
the two quadratic forms in Eq. (30). From Assumption
A.10, we have

ffiffiffi
T
p AF

AG

 !
¼

ffiffiffi
T
p
ðET�EÞ

@fðy0F Þ

@yF
@fðy0GÞ

@yG

0
BBB@

1
CCCA*Nð0,CÞ, ð32Þ

where

C¼
LF LFG
LGF LG

 !
¼ E

@fðy0F Þ

@yF
@fðy0GÞ

@yG

0
BBB@

1
CCCA

@fðy0F Þ

@yF
@fðy0GÞ

@yG

0
BBB@

1
CCCA
0

:

Then the asymptotic distribution of ½d̂
þ

F �
2�½d̂

þ

G �
2 should

follow a weighted w2 distribution as given in Theorem 3.

Theorem 3 (Model selection for nested models). Suppose

model F is nested by model G and Assumptions A.1 to A.10 in

the Appendix hold. Then

under H0: dþF ¼ dþG , Tð½d̂
þ

F �
2�½d̂

þ

G �
2Þ has an asymptotic

weighted w2 distribution, and the weights are the

eigenvalues of the following matrix:

1

2

�G�1
F LF �G�1

F LFG
G�1
G LGF G�1

G LG

0
@

1
A;

and

under HG: d
þ

F 4dþG , Tð½d̂
þ

F �
2�½d̂

þ

G �
2Þ-þ1.

Proof. See the Appendix.

The case for overlapping models is much more
complicated, because the term ðET�EÞ½fðy0F Þ�fðy0GÞ�

might or might not vanish under H0: dþF ¼ dþG . The two
models could be observationally equivalent for certain
parameter values under H0: dþF ¼ dþG . In such cases, the
term ðET�EÞ½fðy0F Þ�fðy0GÞ� ¼ 0, and the test statistic

½d̂
þ

F �
2�½d̂

þ

G �
2 is determined by the two quadratic forms

and follows a weighted w2 distribution. There is also the
possibility that the two models are not observationally

equivalent under H0: dþF ¼ dþG . In such cases, the term

ðET�EÞ½fðy0F Þ�fðy0GÞ�a0, and the test statistic

½d̂
þ

F �
2�½d̂

þ

G �
2 follows a normal distribution. Due to this

additional complexity, we first need to test the possibility
that the two models are observationally equivalent before
we can decide which asymptotic distribution to use to test
the null hypothesis H0: dþF ¼ dþG . Following similar
arguments in Theorem 3, we can show that if,
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fðy0F Þ ¼fðy0GÞ with probability one, ½d̂
þ

F �
2�½d̂

þ

G �
2 should

follow a weighted w2 distribution as given below.

Theorem 4 (Model selection for overlapping models). Sup-

pose models F and G are overlapping models and Assump-

tions A.1 and A.10 in the Appendix hold. Then

under H�0: fðyF0Þ ¼fðyG0Þ with probability one,

Tð½d̂
þ

F �
2�½d̂

þ

G �
2Þ has an asymptotic weighted w2 distribu-

tion and the weights are the eigenvalues of the matrix

1

2

�G�1
F LF �G�1

F LFG
G�1
G LGF G�1

G LG

0
@

1
A;

and

under H�A: fðyF0ÞafðyG0Þ with positive probability,

Tð½d̂
þ

F �
2�½d̂

þ

G �
2Þ-1 ðeitherþ1 or �1Þ.

Proof. See the Appendix.

In summary, the comparison of overlapping models
should be done according to the following procedures.
�

pro

to t

sho

per

and

The
Test whether the two models are observationally
equivalent using Theorem 4,18
�
 If the test fails to reject H�0, then the two models are
indistinguishable given the test assets.

�

20 For example, we can test whether the d̂
þ

of an SDF model is

significantly different from a pre-specified level, say 0.5, using the
If the test rejects H�0, then test H0: dþF ¼ dþG using the
asymptotic distribution in Theorem 2.19

Although the asymptotic distributions in Theorems 3
and 4 appear to be similar, the focuses of the two
theorems are totally different. Theorem 3 is a one-sided
test of the hypothesis that two nested SDF models have
the same second HJD. Theorem 4 is a two-sided test of the
hypothesis that two overlapping SDF models are observa-
tionally equivalent. We obtain such similar results in
Theorems 3 and 4, because we test both hypotheses using
the same test statistic and two nested models are
observationally equivalent if they have the same second
HJDs.

Given that most models, especially linear factor
models, are likely to be misspecified, the model selection
procedures developed in this section make important
methodological contributions to the asset pricing litera-
ture. Although HHL (1995) and Hansen and Jagannathan
(1997) develop the asymptotic distributions of the two
HJDs for misspecified models, their results can test only
the null hypothesis that a given model has a fixed
(nonzero) level of first or second HJD. Their results,
however, cannot be used for formal model comparison
because they do not provide the distribution of the
18 Vuong (1989) shows that under H�0: fðyF0Þ ¼fðyG0Þ with

bability one, ½ŝT �
2 follows a weighted w2 distribution and chooses

est H�0 based on ½ŝT �
2. However, our simulation results (not reported)

w that our test in Theorem 4 has much better finite sample

formances than Vuong’s test.
19 For two overlapping but not observationally equivalent models F
G, Tð½d̂

þ

F �
2�½d̂

þ

G �
2Þ has an asymptotic normal distribution as given in

orem 2.
difference of the HJDs between two models.20 Even
though one can extend their analyses to study the
difference of the HJDs between the two models, such an
extension can cover only the case of strictly non-nested
models. Only based on the second-order Taylor approx-
imation of the HJDs can we develop the model selection
tests for nested and overlapping models.21 Therefore, our
model selection procedures fill an important gap in the
literature by providing a systematic approach for compar-
ing potentially misspecified SDF models based on the
second HJD.

4. Finite sample performances of asset pricing tests

In this section, we provide simulation evidence on the
finite sample performances of both the specification test
and model selection tests. We first discuss the simulation
designs and then report the simulation results. Overall,
we find that our tests have reasonably good finite sample
performances for sample sizes typically considered in the
literature.

4.1. Simulation designs

We first discuss our simulation designs for the
specification test. Suppose an SDF model has the repre-
sentation

Ht ¼ b0Ft , ð33Þ

where b is an K � 1 vector of market prices of risk and Ft is
an K � 1 vector of risk factors. We obtain simulated
random samples of Ht and its associated asset returns, i.e.,
Dt ¼ ðFit ,YjtÞ

0, for t=1,y,T, i=1,y,K (the number of factors),
and j=1,y,N (the number of assets), from a (K+N)-
dimensional multivariate normal distribution

Dt 	NðmD,SDÞ, ð34Þ

where mD is an ðKþNÞ � 1 vector of the mean values of
ðFt ,YtÞ

0 and SD is an ðKþNÞ � ðKþNÞ covariance matrix of
(Ft, Yt).

To make our simulation evidence empirically relevant,
we choose simulation designs to be consistent with
empirical studies in later sections. Specifically, we allow
the market prices of risk b, the mean values of the risk
factors, i.e., the first K elements of mD, and the covariance
matrix SD to be estimated from empirical data. However,
the expected returns of the N assets are determined by the
asset pricing model we choose. That is, if Ht can correctly
price all test assets, i.e., EðHtYtÞ ¼ EðXt�1Þ, then the
results of HHL (1995) and Hansen and Jagannathan (1997). Suppose we

find that d̂
þ

F ¼ 0:5 and d̂
þ

G ¼ 1 in our empirical analysis. We cannot test

whether d̂
þ

G is significantly different from d̂
þ

F using the results of HHL

(1995) and Hansen and Jagannathan (1997), because their tests do not

simultaneously account for the estimation errors in both d̂
þ

F and d̂
þ

G . In

contrast, our model selection tests explicitly characterize the asymptotic

behavior of ½d̂
þ

F �
2�½d̂

þ

G �
2.

21 A second-order Taylor approximation of the second HJD is also

needed to develop the model selection tests for overlapping and nested

models.
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expected returns of the N assets can be written as

EðYtÞ ¼
EðXt�1Þ�covðYt ,HtÞ

EðHtÞ
: ð35Þ

The above simulation procedure guarantees only that the
expected returns of the test assets are determined by the
pricing kernel we choose. The pricing kernel itself, however,
can take negative values with positive probability.

Based on the above procedure, we generate five
hundred random samples of Dt with different number of
time series observations T. In our main simulation, we
choose N=26 to mimic the risk-free asset and the Fama
and French 25 size/BM portfolios that have been widely
used in the empirical literature.22 We choose T=200,400,
and 600, where 200 (600) represents the typical number
of quarterly (monthly) observations available in standard
empirical asset pricing studies.

For each simulated random sample, we estimate model
parameters and conduct specification tests based on the
first and second HJDs. Then we report rejection rates
based on the asymptotic critical values at the 10% and 5%
significance levels of the two tests.23 If the tests have good
size performances, then the rejection rates for a correctly
specified model at the above critical values should be
close to 10% and 5%, respectively. If the tests have good
power performances, then the rejection rates for a
misspecified model should be close to one.

We examine the finite sample size performances of the
specification tests using the Fama and French three-factor
model (FF3) with the SDF

HFF3
t ¼ b0þb1rMKT,tþb2rSMB,tþb3rHML,t , ð36Þ

where rSMB,t and rHML,t are the return differences between
small and big firms and high and low BM firms,
respectively. FF3 is a widely used model in the literature.
Although it is a linear factor model, its SDF at empirically
estimated parameter values from historical Fama and
French portfolios take negative values with negligible
probability. Therefore, we treat FF3 as the true model in
our size simulations. To examine the finite sample power
performances of the specification tests, we consider a
simple Capital Asset Pricing Model (CAPM). Because the
data are generated from FF3, the CAPM should not be able
to price the assets and should be rejected by the
specification tests.

Next we discuss our simulation designs for the model
selection tests. For all the tests we consider, we generate
simulated data using the same FF3 model in Eq. (36). We
face many choices in what types of models to use when
testing the finite sample size and power performances of
the model selection tests because of the different model
structures. Given that we simulate data from FF3, we
choose some simple deviations from FF3 in our simula-
22 We also consider simulation results not reported for the Fama and

French nine portfolios. We find that most tests have better finite sample

performances for a smaller number of assets.
23 We obtain the asymptotic critical values at the 10% and 5%

significance levels based on ten thousand simulated samples from

the weighted w2 distributions in Theorem 1 for the first and second HJDs.

We use similar procedures to obtain the asymptotic critical values for

the model selection tests in Theorems 3 and 4 as well.
tions. In particular, all deviations from FF3 are based on
the following two redundant factors:

r1,t 	Nðmm,smÞ ð37Þ

and

r2,t 	Nðmm,smÞ, ð38Þ

where mmðsmÞ is the mean (volatility) of excess market
returns during our sample period and r1,t and r2,t are
independent of each other. They are also independent of
all the FF3 factors and the asset returns.

To examine the size of the test for non-nested models,
we consider the two models

Hr1
t ¼ br1,t ð39Þ

and

Hr2
t ¼ br2,t : ð40Þ

We estimate the two models using simulated data and
test the null hypothesis that the two models have the
same first or second HJDs. Because the two models are
equally wrong from FF3, the null hypothesis of equal first
or second HJDs should hold. To examine the power of the
test, we test whether Hr1

t and HFF3
t have the same first or

second HJDs, a hypothesis that should be rejected by the
simulated data.

To examine the size of the test for nested models, we
consider the model

HFF3þ r1
t ¼ b0þb1rMKT,tþb2rSMB,tþb3rHML,tþb4r1,t : ð41Þ

We estimate HFF3þ r1
t and Ht

FF3 using simulated data and
test the null hypothesis that the two models have the
same first or second HJDs. This hypothesis should hold,
because HFF3þ r1

t nests Ht
FF3 and r1,t is a redundant factor.

To examine the power of the test, we test whether Hr1
t and

HFF3þ r1
t have the same first or second HJDs. This hypoth-

esis should be rejected by the simulated data because
HFF3þ r1

t has smaller first and second HJDs than Hr1
t .

To examine the size of the test for overlapping models,
we compare HFF3þ r1

t with

HFF3þ r2
t ¼ b0þb1rMKT,tþb2rSMB,tþb3rHML,tþb4r2,t : ð42Þ

We estimate HFF3þ r1
t and HFF3þ r2

t using the simulated data
and test the null hypothesis that the two models are
observationally equivalent. This hypothesis should hold
because HFF3þ r1

t overlaps with HFF3þ r2
t and r1,t and r2,t are

redundant factors. To examine the power of the test, we
test whether HFF3þ r1

t is observationally equivalent to
Hr1þ r2

t , where

Hr1þ r2
t ¼ b1r1,tþb2r2,t : ð43Þ

The two models are not observationally equivalent, and
HFF3þ r1

t should have smaller first and second HJDs than
Hr1þ r2

t .

4.2. Finite sample size and power performances

Panel A of Table 1 reports the size and power
performances of the d- and dþ -based specification tests
using simulated data that mimic the risk-free asset and
the Fama and French 25 portfolios. Specifically, it reports
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Table 1
Finite sample performances of specification and model comparison tests.

This table reports the finite sample size and power performances of the specification and model comparison tests based on the first and second Hansen-

Jagannathan distances. In all simulations, we generate data according to the Fama and French three-factor model (FF3). That is, the expected returns of

simulated assets are determined by FF3 and the covariance matrix of simulated asset returns mimics that of the Fama and French 25 portfolios between

1952 and 2000. We generate 500 simulated samples with sample sizes of 200, 400, and 600. For each simulated sample, we test the null hypothesis using

either the specification or model comparison tests. We report rejection rates at the 10% and 5% asymptotic critical values over the 500 simulations. More

details on simulation designs can be found in Section 4.1.

Using d Using d+

Size Power Size Power

Sample size 10% 5% 10% 5% 10% 5% 10% 5%

Panel A. Size and power performances of specification tests

200 19% 13% 51% 41% 21% 13% 61% 51%

400 16% 8% 55% 42% 15% 9% 89% 79%

600 17% 7% 58% 46% 17% 8% 94% 89%

Panel B. Size and power performances of model comparison tests for strictly non-nested models

200 2% 1% 100% 100% 4% 1% 100% 100%

400 2% 0% 100% 100% 5% 2% 100% 100%

600 0% 0% 100% 100% 2% 0% 100% 100%

Panel C. Size and power performances of model comparison tests for nested models

200 5% 3% 99% 99% 5% 3% 100% 100%

400 4% 1% 100% 100% 4% 1% 100% 100%

600 7% 4% 99% 99% 6% 4% 100% 100%

Panel D. Size and power performances of model comparison tests for overlapping models

200 6% 2% 100% 100% 5% 2% 100% 100%

400 7% 3% 100% 100% 7% 3% 100% 100%

600 11% 6% 100% 100% 11% 7% 100% 100%
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the rejection rates of FF3 (the null) and CAPM (the
alternative) based on the asymptotic critical values at the
10% and 5% significance levels for the two tests.

Both tests clearly tend to over-reject the null hypoth-
esis for T=200. The rejection rates for both tests are about
20% and 13% at the 10% and 5% asymptotic critical values,
respectively. The performances of both tests become
reasonably good for T=400 and 600. The rejection rates
for both tests are about 13–15% and 7–8% at the 10% and
5% asymptotic critical values, respectively. Therefore, for
typical sample sizes considered in the current literature,
both d- and dþ -based specification tests have similar and
reasonably good size performances.

Both tests also have similar power performances in
rejecting the misspecified CAPM. For T = 200, the rejection
rates of both tests are about 80% and 75% at the 10% and
5% asymptotic critical values, respectively. As T increases
to 400 and 600, the rejection rates of both tests are close
to 100%.24

Panel B of Table 1 reports both the size and power
performances of the model selection tests for strictly non-
nested models. Both d- and dþ -based tests have very good
size performances with rejection rates close to corre-
sponding asymptotic critical values for all sample sizes.
The tests also have excellent power in detecting models
24 The dþ�based test should be more powerful than the d�based

test in rejecting misspecified models that have small pricing errors but

are not arbitrage-free. This advantage, however, is not reflected here,

because the SDF of CAPM rarely takes negative values in our simulation.
with different HJDs: The rejection rates are close to 100%
at all sample sizes.

Panel C of Table 1 reports the performances of the
model selection tests for nested models. The tests for
nested models tend to slightly under reject the null
hypothesis of equal HJDs between the two models. The
rejection rates for both d- and dþ -based tests are about
5–7% (2–3%) at the 10% (5%) asymptotic critical value for
T=600. The dþ -based test for nested models also has 100%
rejection rates for the two models with different HJDs.

Panel D of Table 1 reports the performances of the
model selection tests for overlapping models. The tests for
overlapping models tend to under reject the null hypoth-
esis of two observationally equivalent models. The
rejection rates of both d- and dþ -based tests are 3–4%
and 1% at the 10% and 5% asymptotic critical values for
T=600, respectively. The dþ -based test has excellent
power with 100% rejection rates for the two models that
are not observationally equivalent.25 In contrast, the
power of the d-based test is much worse with rejection
rates in the range of 60–70%. One main reason for the
different powers of the two tests is that the alternative
model Hr1þ r2

t takes negative value 40% of the time in our
simulation. Therefore, the dþ -based test is more powerful
in differentiating HFF3þ r1

t from Hr1þ r2
t , because the latter is

not arbitrage-free. The above simulation results show that
25 The two models used in the power analysis of overlapping models

have different HJDs. In results not reported here, these two models are

also rejected at 100% level based on Theorem 2.
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the model selection tests also have reasonably good finite
sample performances for typical sample sizes considered
in the current literature.
5. Empirical results

In this section, we provide empirical evidence on the
advantages of the second HJD for empirical asset pricing
studies. In particular, we examine several models that
have been developed in the recent literature to explain
the cross-sectional returns of the Fama-French size/BM
portfolios. These models include that of Lettau and
Ludvigson (2001), Lustig and Nieuwerburgh (2004),
Santos and Veronesi (2006), Li, Vassalou, and Xing
(2006), and Yogo (2006).26 These models also have been
considered by LNS (2010) due to both their importance in
the literature and data availability. LNS (2010) show that
these models pose serious challenges to existing asset
pricing tests that have focused mainly on pricing errors
because the models tend to have small pricing errors for
the Fama and French portfolios by construction. We reach
dramatically different conclusions on model perfor-
mances using the second HJD than the first HJD.
5.1. Asset pricing models

The first model we consider is the conditional
consumption CAPM of Lettau and Ludvigson (2001), in
which the conditioning variable is the aggregate con-
sumption-to-wealth ratio. The SDF of the model has the
expression

HLL
t ¼ b0þb1cayt�1þb2Dctþb3cayt�1Dct , ð44Þ

where cayt�1 is the lagged consumption-to-wealth ratio
and Dct is the log consumption growth rate.

The second model we consider is the conditional
consumption CAPM of Lustig and Nieuwerburgh (2004),
in which the conditioning variable is the housing
collateral ratio. Following LNS (2010), we consider only
their linear model with separate preferences. The SDF of
the model has the expression

HLV
t ¼ b0þb1myt�1þb2Dctþb3myt�1Dct , ð45Þ

where myt�1 is the lagged housing collateral ratio based
on mortgage data.

The third model we consider is the conditional CAPM
of Santos and Veronesi (2006) with the SDF

HSV
t ¼ b0þb1rMKT,tþb2sot�1rMKT,t , ð46Þ

where sot�1 is the lagged labor income-to-consumption
ratio.

The fourth model we consider is the sector investment
model of Li, Vassalou, and Xing (LVX, 2006). The two
versions of the model we consider, denoted as LVX1 and
26 Most of these models incorporate some kind of conditioning

variables to improve the fit of the data. For issues related to conditional

asset pricing models, see Ferson and Harvey (1999) and Farnsworth,

Ferson and Jackson (2002), among others.
LVX2, have the SDFs

HLVX1
t ¼ b0þb1DIHH,tþb2DICorp,tþb3DINcorp,t ð47Þ

and

HLVX2
t ¼ b0þb1DIHH,tþb2DICorp,tþb3DIFCorp,t

þb4DINcorp,tþb5DIFM,t , ð48Þ

where DIHH,t ,DICorp,t , DINcorp,t , DIFCorp,t , and DIFM,t represent
log investment growth rates for households, nonfinancial
corporations, the noncorporate sector, financial corpora-
tions, and the farm sector, respectively. While LVX2 is the
original model considered in LVX (2006), LVX1 is the
simpler version considered in LNS (2010).

The next model we consider is the durable-consump-
tion CAPM of Yogo (2006), in which the factors are the
growth of durable and nondurable consumption and the
market return. The SDF of the model has the expression

HYOGO
t ¼ b0þb1DcNdur,tþb2DcDur,tþb3rMKT,t , ð49Þ

where DcNdur,t and DcDur,t represent log consumption
growth for nondurable and durable goods, respectively.

We obtain most of the factors from the corresponding
authors’ websites. Most of the models use consumption or
investment as factors, which are typically available at only
quarterly frequency. As a result, we estimate all the
models using quarterly returns of the risk-free asset and
the Fama and French 25 portfolios from 1952 to 2000. For
comparison, we also consider the Fama and French three-
factor model, Ht

FF3.27

5.2. Empirical results for the Fama-French portfolios

Our empirical analysis is conducted in several steps.
We first estimate all the models by minimizing their
corresponding first and second HJDs.28 We then conduct
specification tests of all the models based on the first and
second HJDs. Finally, we compare relative model perfor-
mances using the model selection tests based on the first
and second HJDs.

Panel A of Table 2 reports the results of specification
tests of all the models. We first report the estimated first
and second HJDs and their differences. We then report the
probability that Ĥt (estimated using the first HJD) takes
negative values during the sample period, PrðĤt o0Þ.
Finally, we report the p-values of the d- and dþ -based
specification tests for all the models. We reach dramatically
different conclusions on model performances based on the
first and second HJDs. For example, LVX1 and LVX2 have
the smallest first HJDs among all the models. In fact, the
p-values of the d-based specification test for the two
models are 33% and 53%, respectively, while the p-values
for all other models are zero. Therefore, the two models
seem to capture the returns of the Fama and French
portfolios reasonably well based on the first HJD. However,
the probabilities that the estimated SDFs of the two models
take negative values are 14% and 15%, respectively. Because
27 The returns on all the test assets and the Fama and French factors

were downloaded from Ken French’s website on March 13, 2009.
28 For brevity, we do not report the estimates of model parameters

and Lagrangian multipliers. These results are available upon request.
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Table 2
Asset pricing tests based on the first and second Hansen-Jagannathan distances for the risk-free asset and the Fama and French 25 portfolios.

This table provides empirical results on seven asset pricing models based on the two HJDs for the risk-free asset and the Fama and French 25 Size/BM

portfolios from Q2.1952 to Q4.2000. The first data point is Q2.1952 because some of the factors are lagged by one quarter. The returns of all the test assets

and the Fama and French factors are downloaded from Ken French’s website on March 13, 2009. Panel A reports specification test results. The first

(second) row of Panel A contains the estimated first (second) HJD. The third row of Panel A contains the percentage difference between the two HJDs. The

fourth row reports the probabilities that SDF models estimated using the first HJD take negative values during the sample period. The last two rows of

Panel A report the p-values of specification tests based on the first and second HJDs. Panel B contains the results on model comparison for overlapping

models. The reported numbers are the p-values of the hypothesis that the model in the corresponding column is observationally equivalent to the model

in the corresponding row. Panel C contains the results on model comparison for overlapping but not observationally equivalent models. The reported

numbers are the t-statistics for the difference between the HJDs of the model in the corresponding column and the model in the corresponding row. If the

column model is better than the row model at the 5% significance level, then the t-statistic should be smaller than �1.96, and vice versa.

Panel A: Results of specification tests using the risk-free asset and the Fama and French 25 portfolios

LL LV SV LVX1 LVX2 YOGO FF3

D 0.643 0.643 0.642 0.580 0.546 0.651 0.582

dþ 0.685 0.700 0.667 0.691 0.684 0.673 0.607

ðdþ�dÞ=d 6% 9% 4% 19% 25% 3% 4%

pðHo0Þ 2% 10% 1% 14% 15% 0% 2%

pðd¼ 0Þ 0% 0% 0% 33% 53% 0% 0%

pðdþ ¼ 0Þ 0% 0% 0% 0% 0% 0% 0%

Panel B: Results of model comparison tests for overlapping models

Using d Using dþ

Model LL LV SV LVX1 LVX2 YOGO LL LV SV LVX1 LVX2 YOGO

LV 93% 42%

SV 90% 85% 87% 30%

LVX1 7% 10% 5% 71% 72% 51%

LVX2 5% 6% 3% 16% 80% 63% 63% 34%

YOGO 45% 50% 26% 2% 2% 67% 73% 26% 96% 84%

FF3 23% 36% 0% 18% 11% 0% 7% 1% 0% 1% 2% 0%

Panel C: Results of model comparison tests for overlapping but not observationally equivalent models

Using d Using dþ

Model LL LV SV LVX1 LVX2 YOGO LL LV SV LVX1 LVX2 YOGO

LV

SV

LVX1 0.67

LVX2 0.82 0.91

YOGO �0.79 �1.00

FF3 1.83 2.03 2.21 2.04 1.94 1.77 2.08

29 Because LVX2 nests LVX1, we compare this pair of models using

the tests in Theorem 3.
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the second HJD explicitly requires a good model to be
arbitrage-free, the two models are overwhelmingly rejected
by the dþ -based specification test. All the other models are
rejected by the second HJD as well.

In theory, the consumption-based models should have
better performances than FF3 measured by the second
HJD, because the former is designed to price both the
primary and derivatives assets while FF3 focuses mainly
on pricing the primary assets. However, FF3 has smaller
second HJD than all the consumption-based models. One
reason for this result is that the consumption-based
models we consider are linearized versions of the original
models and are not guaranteed to be arbitrage-free.
Another and more fundamental reason is that the
consumption-based models try to explain the cross-
sectional returns of the Fama and French portfolios
using fundamental economic variables, which is more
challenging than using factors extracted from stock
returns, such as the Fama and French factors.

Next we consider the relative performances of these
models using the model selection tests based on the first
and second HJDs. Panel B of Table 2 reports the model
comparison results based on the tests for overlapping
models in Theorem 4, because all models we consider
share at least one common constant factor and thus are
overlapping models.29 Each entry in Panel B represents
the p-value of the hypothesis that the model in the
corresponding column is observationally equivalent to the
model in the corresponding row. Among all the pairs of
models we consider, we conclude based on the first HJD
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Fig. 2. Time series plots of two stochastic discount models estimated using the risk-free asset and the 25 Fama and French size/book-to-market

portfolios. Panel A (B) contains time series plots of empirically estimated two stochastic discount factor models of Li, Vassalou, and Xing (2006) (denoted

by LVX1 and LVX2) using the first and second HJDs. The details of the model can be found in Section 5.1.
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that LVX2 is not observationally equivalent to LL, SV, and
YOGO; LVX1 is not equivalent to SV to YOGO; and FF3 is
not equivalent to SV and YOGO. In contrast, based on the
second HJD, we conclude that FF3 is not observationally
equivalent to almost all other models, which appear to be
not distinguishable from each other. These results are
consistent with that in Panel A of Table 2, where all
models except FF3 have similar second HJDs.

For those models that are not observationally equiva-
lent, in Panel C of Table 2, we test whether they have the
same first or second HJDs based on the tests for non-
nested models in Theorem 2.30 Each entry in Panel C
represents the test statistic of the hypothesis that the
model in the corresponding column is better than the
model in the corresponding row measured by the first or
second HJD. We again reach dramatically different
conclusions based on the first and second HJDs. Only
YOGO has significantly bigger first HJD than FF3, while all
other pairs of nonequivalent models do not exhibit
significantly different first HJDs. In contrast, we find most
other models have significantly bigger second HJDs than
FF3, suggesting that none of them can capture the returns
of the Fama and French portfolios as well as FF3.
30 The difference between the first or second HJDs of two over-

lapping but not observationally equivalent models has the same

distribution as that between two strictly non-nested models.
The two HJDs also lead to very different estimated SDF
models. We present time series plots of Ĥt (estimated
using the first HJD) and Ĥ

þ

t (estimated using the second
HJD) for LVX1 and LVX2 in Panels A and B of Fig. 2,
respectively. It is clear that Ĥt takes negative values much
more frequently than Ĥ

þ

t for both models, and Ĥ
þ

t takes
negative values only on rare occasions. Therefore, for a
given sample, though linear factor models estimated
using the first HJD can take negative values with high
probabilities, they can be made closer to be arbitrage free
when estimated using the second HJD.

To summarize, the first and second HJDs could lead to
dramatically different conclusions on model performances.
Even though based on the first HJD certain models appear
to do a good job in explaining the Fama and French
portfolios, all models are overwhelmingly rejected by the
second HJD. Moreover, the second HJD is more powerful
than the first HJD in distinguishing models that have
similar pricing errors of the test assets but are not
arbitrage-free. The analysis in this subsection shows that
the second HJD can make significant differences in
empirical asset pricing studies.
5.3. Further diagnostics

While we evaluate and compare asset pricing models
using the second HJD in the previous subsection, we
provide further diagnostics in this subsection to better
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Table 3
Correlation matrices for the estimated SDFs, the implied true SDFs, and the adjustment portfolios under the first and second HJDs.

This table provides correlation matrices for the estimated SDFs, the implied true SDFs, and the adjustment portfolios under the first and second HJDs

using the risk-free asset and the Fama and French 25 Size/Book-to-Market portfolios from Q2.1952 to Q4.2000. The adjustment portfolios are the

differences between the estimate SDFs and the implied true SDFs.

Using d Using dþ

Model LL LV SV LVX1 LVX2 YOGO LL LV SV LVX1 LVX2 YOGO

Panel A: Correlation matrix of the estimated SDFs under the first and second HJDs

LV 0.56 0.57

SV 0.22 0.05 0.26 0.10

LVX1 0.02 0.05 0.01 0.09 0.12 0.06

LVX2 0.06 0.10 �0.01 0.90 0.08 0.07 0.07 0.89

YOGO 0.26 0.23 0.65 0.05 0.01 0.28 0.22 0.79 0.11 0.10

FF3 0.26 0.13 0.60 0.15 0.16 0.58 0.26 0.14 0.64 0.19 0.19 0.62

Panel B: Correlation matrix of the implied true SDFs under the first and second HJDs

LV 0.77 0.94

SV 0.76 0.63 0.89 0.93

LVX1 0.40 0.36 0.47 0.87 0.90 0.93

LVX2 0.37 0.34 0.40 0.92 0.85 0.88 0.92 0.99

YOGO 0.79 0.70 0.95 0.49 0.42 0.91 0.95 0.98 0.94 0.93

FF3 0.80 0.67 0.96 0.52 0.45 0.99 0.91 0.94 0.99 0.94 0.93 1.00

Panel C: Correlation matrix of the adjustment portfolios (the difference between estimated SDFs and the implied true SDFs) under the first and second

HJDs

LV 0.96 0.97

SV 0.94 0.89 0.95 0.93

LVX1 0.78 0.81 0.77 0.93 0.96 0.91

LVX2 0.74 0.76 0.71 0.94 0.93 0.95 0.90 0.99

YOGO 0.93 0.90 0.98 0.82 0.75 0.95 0.94 0.99 0.92 0.91

FF3 0.87 0.82 0.92 0.75 0.73 0.89 0.87 0.85 0.91 0.84 0.84 0.90
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understand the differences and similarities among all the
models.

In Table 3, we report the correlation matrices of the
estimated SDFs (Ĥt and Ĥ

þ

t ), the implied true SDFs (Ĥt�l̂
0

Yt

and ½Ĥ
þ

t �l̂
þ0

Yt�
þ ), and the adjustment portfolios (l̂

0

Yt and
Ĥ
þ

t �½Ĥ
þ

t �l̂
þ0

Yt �
þ ) for all the models under the first and

second HJDs. Panel A of Table 3 shows that the correlations of
the estimated SDFs among most models are low under both
the first and second HJDs. The only exception is the two
investment-based models, whose correlation coefficient is
0.90 (0.89) under the first (second) HJD. There is not a
uniform relation between the correlations under the first and
second HJDs: For certain models the correlations are higher
under the first HJD, but for other models, the opposite is true.
These results are not surprising given that most models focus
on different economic factors to explain asset prices. The
implied true SDFs have to correctly price all the test assets by
construction. As a result, their correlations are much higher
than those of the estimated SDFs as shown in Panel B of
Table 3. Moreover, because the true SDFs under the second
HJD have to be arbitrage-free, their correlations are uniformly
larger than that of the true SDFs under the first HJD. Panel C
of Table 3 reports the correlations of the adjustment
portfolios for all the models under the first and second
HJDs. The low correlations of the estimated SDFs and the high
correlations of the true SDFs and the adjustment portfolios of
the consumption-based models suggest that these models
fail to capture some common components that are important
for pricing the Fama and French portfolios.
To have a better understanding of the missing
components in these models, in Table 4 we regress the
adjustment portfolios under the first and second HJDs on
some well-known economic and stock market factors. The
economic factors include gross domestic product growth
(GDP), industrial production (IP) growth, credit spread
(yield difference between BAA and AAA corporate bonds),
term spread (yield difference between ten-year and one-
year government bonds), quarterly risk-free rate, market
risk premium, and market index volatility. The stock
market factors include the six Fama and French size and
BM benchmark portfolios, which help to better
understand which dimension of the size and BM effects
the models fail to capture. We report the ordinary least
squares regression coefficients and the adjusted R2s in
Table 4, where bold entries represent coefficients that are
significant at 5% level.

Panels A and B of Table 4 report the regression results
with the economic and stock market factors, respectively.
Panel A shows that under both the first and second HJDs,
term spread and risk-free rate are significant for all
models, suggesting that all models need to better capture
pricing information contained in the two factors to be
admissible. Panel B shows that under both the first and
second HJDs, the big-low (BL), small-low (SL), and small-
high (SH) portfolios are significant for all models and that
the big-high (BH) portfolio is significant for all models
except LVX1 and LVX2. The R2’s in Panel B are generally
higher than that in Panel A, although the R2’s are low in



A
R
TIC

LE
IN

PR
E
S
S

Table 4
Regressions of the adjustment portfolios under the first and second Hansen-Jagannathan distances on economic and stock market factors.

This table provides regression results of the adjustment portfolios under the first and second HJDs on economic and stock market factors using the risk free-asset and the Fama and French 25 Size/Book-to-

Market portfolios from Q2.1952 to Q4.2000. Panels A and B contain regression results based on economic and stock market factors, respectively. In Panel A, GDP is the quarterly growth rate of log gross domestic

product growth, IP is the quarterly growth rate of industrial production, Credit is the quarterly yield spread between BAA corporate bond and AAA corporate bond, Term is the quarterly yield spread between

ten-year T-bond and one-year T-bond, Vol is the quarterly volatility of the market return index, Rf is the quarterly risk-free rate, and Mkt is the quarterly excess return of the market index. In Panel B, BL, BM, BH,

SL, SM, and SH represent the big/low (BL), big/median (BM), big/high (BH), small/low (SL), small/median (SM), and small/high (SH) Fama-French benchmark portfolios, respectively. Bold entries represent

ordinary least squares regression coefficients that are significant at the 5% level.

Using d Using dþ

LL LV SV LVX1 LVX2 YOGO FF3 LL LV SV LVX1 LVX2 YOGO FF3

Panel A: Regression results based on economic factors

GDP 6.19 4.29 7.33 2.94 3.29 6.10 6.59 5.68 5.26 7.06 4.55 4.68 5.75 6.32

IP �3.80 �3.12 �3.86 �2.09 �2.14 �3.52 �3.98 �3.15 �3.73 �3.13 �2.60 �2.53 �3.16 �3.56

Credit �4.84 �0.16 �21.71 �13.16 1.45 �25.66 �23.00 �10.07 �21.23 �24.58 �24.77 �25.32 �35.27 �32.11

Term 13.37 13.78 19.85 16.37 10.09 20.04 13.46 16.83 22.20 22.11 21.31 20.63 23.51 16.58
Vol 0.04 �0.58 �0.32 �0.92 �1.20 �0.39 �1.01 �0.16 �0.66 �0.41 �0.87 �0.97 �0.38 �1.08

Rf �13.82 �15.10 �17.26 �16.31 �12.85 �17.16 �10.43 �16.16 �20.87 �18.42 �19.44 �18.89 �19.23 �12.11
Mkt �0.05 0.05 �0.24 0.29 0.26 �0.15 �0.21 0.13 0.33 �0.16 0.60 0.52 �0.09 �0.15

Adjusted. R2 1.91% 2.80% 4.01% 5.17% 5.18% 3.43% 2.30% 1.98% 6.03% 4.46% 6.79% 6.32% 4.71% 3.22%

Panel B: Regression results based on Fama-French six benchmark portfolios

BL 3.41 4.12 3.16 4.64 4.20 2.82 5.34 3.77 4.44 3.18 4.50 4.66 2.97 5.46
BM 1.74 1.19 0.63 1.92 3.35 0.35 �1.24 1.11 1.15 0.49 1.24 0.66 �0.04 �1.43

BH �4.96 �4.23 �5.54 �1.23 �2.38 �3.49 �6.25 �4.40 �3.62 �5.05 �2.72 �2.96 �3.34 �6.24
SL �5.96 �6.24 �6.67 �4.31 �2.94 �6.72 �4.53 �6.47 �6.56 �6.81 �6.01 �6.15 �6.86 �4.64
SM 1.37 1.23 1.91 �4.22 �5.28 1.19 2.02 1.81 1.70 1.91 0.70 0.88 1.67 2.30

SH 6.82 7.08 7.72 6.30 6.11 7.42 4.72 7.15 6.94 7.60 6.32 6.71 7.12 4.59
Adjusted R2 19.44% 24.47% 22.92% 23.14% 20.68% 24.46% 11.84% 22.42% 27.17% 21.72% 23.83% 24.31% 22.59% 11.05%
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both panels (the highest adjusted R2 is less than 30%). This
suggests that all the factors we consider still fail to
adequately capture the missing components of the
models, which we leave for future research.
6. Conclusion

In this paper, we develop a systematic approach for
evaluating asset pricing models based on the second HJD,
which unlike the first HJD, explicitly requires a good asset
pricing model to be arbitrage free. We develop both a
specification test and a sequence of model selection
procedures in the spirit of Vuong (1989) for non-nested,
overlapping, and nested models based on the second HJD.
Compared with existing methods, our tests are more
powerful in detecting misspecified models that have small
pricing errors but are not arbitrage-free and in differ-
entiating the relative performances of models that have
similar pricing errors of a given set of test assets.
Simulation studies show that our tests have reasonably
good finite sample performance for typical sample sizes
considered in the literature. Using the Fama and French
size and book-to-market portfolios, we reach dramatically
different conclusions on model performances using our
approach and existing methods.
Appendix A

In this appendix, we provide the assumptions and
detailed mathematical proofs of all the results in the
paper.

Assumption A.1. The population optimization problem
has a unique solution

y0 ¼ ðg0,l0Þ � arg min
g

max
l

Efðg,lÞ,

which is an interior point of the parameter space of
y¼ ðg,lÞ.

Assumption A.2. EJYJ2o1, EJXJ2o1, and
E½maxJg�g0JoCHðgÞ2�o1 for some C40.

Assumption A.3. The SDF model HðgÞ is twice continu-
ously differentiable with respect to g.

Assumption A.4. The set fHðgÞ�l0Y ¼ 0g has probability
zero under the true probability measure.

Assumption A.5. The first-order derivatives (which exist
everywhere)

@f
@y
¼

@f
@g
@f
@l

0
BBB@

1
CCCA

form a Donsker class for ðg,lÞ in a neighborhood of ðg0,l0Þ.

Assumption A.6. The time series ðYt ,Xt�1,HtðgÞÞ are
stationary and ergodic.
Assumption A.7. The matrix G defined by

G� E
@2fðy0Þ

@y@y0
�

E
@2fðy0Þ

@g@g0
E
@2fðy0Þ

@g@l0

E
@2fðy0Þ

@l@g0
E
@2fðy0Þ

@l@l0

0
BBBB@

1
CCCCA�

G11 G12

G21 G22

 !

is nonsingular, with a positive definite G22 and a negative
definite ½G11�G12G�1

22 G21�. The second derivatives are well
defined except on a set with zero probability.

The above assumptions are somewhat standard in
asymptotic analysis. Assumption A.1 is needed for
identification purpose. Assumption A.2 requires all
random variables to be square integrable, which is needed
for the existence of the asymptotic covariance matrix of
the second HJD and exchanging differentiation and
expectation operations. Assumption A.3 is a smoothness
assumption needed for quadratic Taylor series expansion.
Assumption A.4 guarantees that the set of non-differenti-
able points of the second HJD is not too big so that
differentiability in quadratic mean holds. It should hold
for most models in the existing literature. Assumption A.5
ensures that central limit theorem holds for the first
derivatives of f. A set F of functions is called a Donsker
class for P if a functional central limit theorem holds for
the sequence of empirical processes

ffiffiffi
T
p
ðET�EÞf for f 2 F

(see Dudley, 1981). A key property of a Donsker class is
that, for every given e40, Z40, there exists a B40 and
an T0 such that, for all T4T0

P sup
½B�
j
ffiffiffi
T
p
ðET�EÞf1�

ffiffiffi
T
p
ðET�EÞf2j4Z

( )
oe: ð50Þ

½B� means that the supremum runs over all pairs of
functions f1 and f2 in F that are less than B apart in L2(P)
norm. This property is needed to justify the first-order
approximation to the random component ðET�EÞfðy,lÞ.
Assumption A.6 enables inferences of population distribu-
tion using time series counterparts. In certain applica-
tions, we might need to transform the original price
or payoff series in order to satisfy Assumption A.6.
For example, although stock prices generally are not
stationary and ergodic, stock returns generally are.
Assumption A.7 ensures that the optimization problem
ming maxlEfðg,lÞ is well defined.

Lemma 1. Suppose Assumptions A.1 to A.7 hold. Then the

following local asymptotic quadratic representation holds for

ETfðyÞ around y0:

ETfðyÞ ¼ Efðy0ÞþðET�EÞfðy0ÞþA0ðy�y0Þ

þ1
2ðy�y0Þ

0Gðy�y0ÞþoðJy�y0J
2
ÞþopðJy�y0JT�1=2Þ,

where A¼ ðET�EÞ@fðy0Þ=@y and G¼ E@2fðy0Þ=@y@y
0.

Proof. We decompose ETfðyÞ into a deterministic term,
Efðy0Þ, and a centered random term, ðET�EÞfðyÞ,

ETfðyÞ ¼ EfðyÞþðET�EÞfðyÞ: ð51Þ

The LAQ representation of ETfðyÞ is based on a second-
order Taylor approximation of ETfðyÞ and a first-order
approximation of ðET�EÞfðyÞ. The random component is
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centered and in general one order smaller than the
deterministic term.

We first consider the second-order approximation of

EfðyÞ. Because HðgÞ is twice differentiable in g, fðyÞ has

the continuous first-order derivatives

@fðyÞ
@y
¼

@fðyÞ
@g

@fðyÞ
@l

0
BBB@

1
CCCA¼ 2HðgÞ @HðgÞ

@g �2½HðgÞ�l0Y �þ @HðgÞ
@g

2½HðgÞ�l0Y�þY�2X

0
B@

1
CA:
ð52Þ

From Assumption A.2, we have

@

@y
EfðyÞ ¼ E

@fðyÞ
@y

: ð53Þ

We now demonstrate that although the first-order

derivatives of f in Eq. (52) are not differentiable every-

where, they are in fact differentiable in quadratic mean as

in Pollard (1982, p. 920). A random function f ðaÞ is

differentiable in quadratic mean with respect to a at a0 if

there exists a random vector D such that

f ðaÞ ¼ f ða0ÞþD
0
ða�a0ÞþJa�a0JR, ð54Þ

where

EðRÞ2-0 as a-a0:

Intuitively, this means that f ða0ÞþD0ða�a0Þ is a good

approximation to f ðaÞ around a0 on average.

To demonstrate that Eq. (52) is differentiable in

quadratic mean, define the remainder term r by the

following equation:

@fðyÞ
@y
¼
@fðy0Þ

@y
þ
@2fðy0Þ

@y@y0
ðy�y0ÞþJy�y0Jr: ð55Þ

Although the second derivatives involved might not exist

everywhere, the set of points for which they are not

defined has probability zero due to Assumption A.4.

Hence as a function in the Hilbert space L2(P), the

remainder term r is well defined. The remainder term r

can be shown to be dominated by a function in L2(P) and

r-0 almost surely as y-y0. The argument for this

assertion is similar to that of Lemma A in Pollard (1982).

By the dominated convergence theorem, this implies

differentiability in quadratic mean of the above first-

order derivatives of f. Because L2(P) convergence implies

L1(P) convergence, the quadratic mean differentiability for

Eq. (52) implies that EfðyÞ has traditional second

derivatives given by E@2fðyÞ=@y@y0. We emphasize again

that the second-order derivatives inside the expectation

operator is well defined except on a set of zero

probability.

It follows that the deterministic term EfðyÞ has the

quadratic approximation

EfðyÞ ¼ Efðy0Þþ
1

2
ðy�y0Þ

0
� E
@2fðy0Þ

@y@y0

�ðy�y0ÞþoðJðy,lÞ�ðy0,l0ÞJ
2
Þ: ð56Þ
Note that E@fðy0Þ=@y¼ 0, because y0 ¼ ðg0,l0Þ solves the

population optimization problem mingmaxlEfðyÞ. There-

fore, compared with traditional Taylor expansions, the key

point here is to justify that we can still use the second-

order derivatives of f (which are not defined everywhere)

to obtain an approximation to EfðyÞ.
Next we consider a first-order approximation of

ðET�EÞfðyÞ. The first-order differentiability of fðyÞ with

respect to y and Assumption A.5 on the first-order

derivatives guarantee the stochastic differentiability of

the empirical process [see Pollard, 1982, p. 921, Eq. (4)]

ðET�EÞfðyÞ ¼ ðET�EÞfðy0ÞþðET�EÞ
@fðy0Þ

@y0

�ðy�y0ÞþopðJy�y0JT�1=2Þ: ð57Þ

Combining Eq. (A.3) and (57), we obtain the LAQ

representation for ETfðyÞ. &

Based on the LAQ representation of ETfðyÞ in Lemma 1,
we solve the minimax problem ming maxl ETfðyÞ to
obtain the asymptotic representation of the second HJD
at ŷ ¼ ðĝ,l̂Þ � arg ming maxl ETfðyÞ. We first make the
following additional assumptions.

Assumption A.8. The estimator ŷ ¼ ðĝ,l̂Þ � arg ming
maxl ETfðyÞ for y0 is consistent.

Assumption A.9. A central limit theorem holds for the
empirical process

ffiffiffi
T
p
ðET�EÞ

@fðy0Þ

@g
@fðy0Þ

@l

0
BBB@

1
CCCA*Nð0,LÞ,

where

L¼ E

@fðy0Þ

@g
@fðy0Þ

@l

0
BBB@

1
CCCA

@fðy0Þ

@g
@fðy0Þ

@l

0
BBB@

1
CCCA
02

6664
3
7775:

As suggested by HHL (1995), the consistency condition
in Assumption A.8 can be replaced by more primitive
assumptions.

Lemma 2. Suppose Assumptions A.1 to A.9 hold. Then we

have the following asymptotic representation of the second

HJD at estimated model parameter ŷ:

½d̂
þ

T �
2 ¼min

g
max

l
ETfðyÞ ¼ Efðy0ÞþðET�EÞfðy0Þ

�1
2A0G�1AþopðT

�1Þ:

Moreover, the optimizer ŷ ¼ ðĝ,l̂Þ � arg ming maxlETfðyÞ
equals

ŷ ¼ y0�G�1AþopðT
�1=2Þ,

where A and G are defined in Lemma 1.

Proof. Denote Ag ¼ ðET�EÞ@fðy0Þ=@g, Al ¼ ðET�EÞ@fðy0Þ=

@l, U ¼ ðg�g0Þ, and V ¼ ðl�l0Þ. Based on the LAQ
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representation in Lemma 1, we have

ETfðyÞ ¼ Efðy0ÞþðET�EÞfðy0Þ

þ
Ag

Al

 !0
U

V

� �
þ

1

2

U

V

� �0 G11 G12

G21 G22

 !
U

V

� �
þoðJðg,lÞ�ðg0,l0ÞJ

2
ÞþopðJðg,lÞ�ðg0,l0ÞJT�1=2Þ

¼ Efðy0ÞþðET�EÞfðy0Þ

þA0gUþ
1

2
U0G11Uþ½AlþG21U�0Vþ

1

2
V 0G22V|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

quadratic in V

þoðJðg,lÞ�ðg0,l0ÞJ
2
ÞþopðJðg,lÞ�ðg0,l0ÞJT�1=2Þ:

For a fixed g, the quadratic in V in the above equation is
maximized at

V̂ ¼ ðl̂�l0Þ ¼�G�1
22 ½AlþG21U�þopðT

�1=2Þ, ð58Þ

and its maximum at V ¼ V̂ equals

A0gUþ1
2 U0G11U�1

2½AlþG21U�0G�1
22 ½AlþG21U�

¼ A0gUþ1
2 U0G11U�1

2 A0lG
�1
22 Al�A0lG

�1
22 G21U�1

2U0½G12G�1
22 G21�UþopðT

�1Þ

¼ �1
2 A0lG

�1
22 Alþ½A

0
g�A0lG

�1
22 G21�Uþ

1
2U0½G11�G12G�1

22 G21�UþopðT
�1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

quadratic in U

:

ð59Þ

The above quadratic in U is minimized at

Û ¼ ðĝ�g0Þ ¼ �½G11�G12G�1
22 G21�

�1½Ag�G12G�1
22 Al�þopðT

�1=2Þ,

ð60Þ

and its minimum at U ¼ Û equals

�1
2 A0lG

�1
22 Al�

1
2½A
0
g�A0lG

�1
22 G21�½G11�G12G�1

22 G21�
�1

½Ag�G12G�1
22 Al�þopðT

�1Þ: ð61Þ

Therefore, the two-step optimization leads to the

following asymptotic representation of the objective

function:

min
g

max
l

ETfðyÞ�Efðy0Þ ¼ ðET�EÞfðy0Þ

�1
2 A0lG

�1
22 Al�

1
2A0g½G11�G12G�1

22 G21�
�1Ag

þA0g½G11�G12G�1
22 G21�

�1G12G�1
22 Al

�1
2A0lG

�1
22 G21½G11�G12G�1

22 G21�
�1G12G�1

22 AlþopðT
�1Þ

¼ ðET�EÞfðy0,l0Þ�
1
2

Ag

Al

 !0
J11 J12

J21 J22

 !
Ag

Al

 !
þopðT

�1Þ,

ð62Þ

where

J11 ¼ ½G11�G12G�1
22 G21�

�1,

J12 ¼ J021 ¼�½G11�G12G�1
22 G21�

�1G12G�1
22 ,

and

J22 ¼G�1
22 þG

�1
22 G21½G11�G12G�1

22 G21�
�1G12G�1

22 : &

Theorem 1 (Specification test). Suppose Assumptions A.1 to

A.9 hold. Then under H0: dþ ¼ 0, T½d̂
þ

T �
2 has an asymptotic

weighted w2 distribution and the weights are the eigenvalues

of the matrix

�1
2½G
�1
22�G

�1
22 G21½G12G�1

22 G21�
�1G12G�1

22 �Ll,
where G12, G21, and G22 are defined in Assumption A.7 and

Ll ¼ E½@fðy0Þ=@l@fðy0Þ=@l
0
�.

Proof. From Lemma 2, we know that under H0: dþ ¼ 0

½d̂
þ

T �
2 ¼ ðET�EÞfðg0,l0Þ�

1

2

Ag

Al

 !0
J11 J12

J21 J22

 !
Ag

Al

 !
þopðT

�1Þ:

ð63Þ

First, we argue that ðET�EÞfðg0,l0Þ ¼ 0 under H0:

dþ ¼ 0. The fact that dþ ¼ 0 means that Efðg0,l0Þ ¼ 0.

Because fðg0,l0Þ is nonnegative, we must have

fðg0,l0Þ ¼ 0 almost everywhere for Efðg0,l0Þ to be zero.

Consequently, ðET�EÞfðg0,l0Þ ¼ 0.

Next we consider the second term in Eq. (63). Under

H0 : d
þ
¼ 0, we must have l0 ¼ 0. Consequently, based on

(A.2) and some simple calculations, we have

Ag ¼
@fðy0Þ

@g ¼ 0 ð64Þ

and

G11 ¼ E
@2fðy0Þ

@g@g0 ¼ 0: ð65Þ

Substituting these representations into Eq. (63), we

obtain that under H0: dþ ¼ 0

T½d̂
þ

T �
2 ¼�1

2½
ffiffiffi
T
p
ðET�EÞAl�

0J22½
ffiffiffi
T
p
ðET�EÞAl�þopð1Þ

¼ �1
2½
ffiffiffi
T
p
ðET�EÞAl�

0½G�1
22�G

�1
22 G21½G12G�1

22 G21�
�1

�G12G�1
22 �½

ffiffiffi
T
p
ðET�EÞAl�þopð1Þ: ð66Þ

Assumption A.9 implies that
ffiffiffi
T
p
ðET�EÞAl-W , where W

is a multivariate normal random vector with mean zero

and covariance matrix Ll. It follows immediately that

under H0: dþ ¼ 0, the asymptotic distribution of T½d̂
þ

T �
2

can be represented as W 0XW ¼ Z0L1=2
l XL1=2

l Z, where

X¼�1
2½G
�1
22�G

�1
22 G21½G12G�1

22 G21�
�1G12G�1

22 �, Z is a vector

of standard multivariate normal random vector, and

W ¼L1=2
l Z. It can be easily shown that L1=2

l XL1=2
l has

the same eigenvalues as XLl. Therefore, T½d̂
þ

T �
2 has an

asymptotic distribution of weighted w2, and the weights

are the eigenvalues of the matrix XLl ¼�
1
2½G
�1
22�

G�1
22 G21½G12G�1

22 G21�
�1G12G�1

22 �Ll. &

Proposition 1 (Parameter estimation). Suppose Assump-

tions A.1 to A.9 hold. Then

the estimator of model parameters, ĝ, has the following

asymptotic distribution:ffiffiffi
T
p
ðĝ�g0Þ*Nð0,ðJ11 J12ÞLðJ11 J12Þ

0
Þ

the estimator of Lagrangian multipliers, l̂, has the

following asymptotic distribution:ffiffiffi
T
p
ðl̂�l0Þ*Nð0,ðJ21 J22ÞLðJ21 J22Þ

0
Þ,

where ðJ11
J21

J12
J22
Þ ¼ ðG11

G21

G12
G22
Þ
�1 and Gij’ s (i,j=1,2) are defined in

Assumption A.7.
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Proof. From the proof of Lemma 2, we have

ĝ�g0 ¼�½G11�G12G�1
22 G21�

�1½Ag�G12G�1
22 Al�þopðT

�1=2Þ

¼�½G11�G12G�1
22 G21�

�1ðI �G12G�1
22 Þ

Ag

Al

 !

þopðT
�1=2Þ ¼�ðJ11 J12Þ

Ag

Al

 !
þopðT

�1=2Þ:

From Assumption A.9, we know immediately thatffiffiffi
T
p
ðĝ�g0Þ is asymptotically normally distributed with

mean zero and covariance matrix ðJ11 J12ÞLðJ11 J12Þ
0.

Similarly, we have the following asymptotic represen-

tation for l̂�l0,

l̂�l0 ¼�G�1
22 ½AlþG21ðĝ�g0Þ�þopðT

�1=2Þ

¼�G�1
22 ðAl�G21½G11�G12G�1

22 G21�
�1½Ag�G12G�1

22 Al�Þ

þopðT
�1=2Þ ¼�G�1

22 ðAl�G21½G11�G12G�1
22 G21�

�1Ag

þG21½G11�G12G�1
22 G21�

�1G12G�1
22 Al�ÞþopðT

�1=2Þ

¼G�1
22 ½G21½G11�G12G�1

22 G21�
�1Ag�ðIþG21

�½G11�G12G�1
22 G21�

�1G12G�1
22 ÞAl�þopðT

�1=2Þ

¼�ðJ21 J22Þ
Ag

Al

 !
þopðT

�1=2Þ ð67Þ

From Assumption A.9, we know immediately thatffiffiffi
T
p
ðl̂�l0Þ is asymptotically normally distributed with

mean zero and covariance matrix ðJ21 J22ÞLðJ21 J22Þ
0. &

Assumption A.10. A central limit theorem holds for the
empirical process

ffiffiffi
T
p
ðET�EÞ

@fðy0F Þ

@yF
@fðy0GÞ

@yG

0
BBB@

1
CCCA*Nð0,CÞ,

where

C¼
LF LFG
LGF LG

 !
¼ E

@fðy0F Þ

@yF
@fðy0GÞ

@yG

0
BBB@

1
CCCA

@fðy0F Þ

@yF
@fðy0GÞ

@yG

0
BBB@

1
CCCA
0

:

Theorem 2 (Model selection for non-nested models). Sup-

pose models F and G are strictly non-nested and Assump-

tions A.1 to A.10 hold. Then

under H0: dþF ¼ dþG ,
ffiffiffi
T
p
ð½d̂
þ

F �
2�½d̂

þ

G �
2Þ=ŝT*Nð0,1Þ;

under HF : dþF odþG ,
ffiffiffi
T
p
ð½d̂
þ

F �
2�½d̂

þ

G �
2Þ=ŝT-�1; and

under HG: d
þ

F 4dþG ,
ffiffiffi
T
p
ð½d̂
þ

F �
2�½d̂

þ

G �
2Þ=ŝT-þ1,

where ½ŝT �
2 is an estimator of Var½fðy0F Þ�fðy0GÞ� and

equals

½ŝT �
2 ¼ ET ½fðŷF Þ�fðŷGÞ�2�ðET ½fðŷF Þ�fðŷGÞ�Þ2:

Proof. From Lemma 2, we have

½d̂
þ

F �
2 ¼min

gF
max
lF

ETfðyF Þ ¼ EfðyF0ÞþðET�EÞfðyF0Þ

�1
2A0F JFAF þopðT

�1Þ, ð68Þ
½d̂
þ

G �
2 ¼min

gG
max
lG

ETfðyGÞ ¼ EfðyG0ÞþðET�EÞfðyG0Þ

�1
2A0GJGAGþopðT

�1Þ, ð69Þ

and

½d̂
þ

F �
2�½d̂

þ

G �
2 ¼ EfðyF0Þ�EfðyG0ÞþðET�EÞ½fðyF0Þ

�fðyG0Þ��
1
2 A0F JFAF þ1

2A0GJGAGþopðT
�1Þ:

ð70Þ

Because two non-nested models can never be observa-

tionally equivalent, the empirical process ðET�EÞ

½fðyF0Þ�fðyG0Þ� does not degenerate. Under H0:

dþF ¼ dþG , EfðyF0Þ�EfðyG0Þ ¼ 0 and the second-order

terms in Eq. (A.11) are OpðT�1Þ and negligible. As a

result,
ffiffiffi
T
p
ð½d̂
þ

F �
2�½d̂

þ

G �
2Þ is asymptotically equivalent toffiffiffi

T
p
ðET�EÞ½fðyF0Þ�fðyG0Þ�, which has an asymptotic nor-

mal distribution with mean zero and variance

s2 ¼ Var½fðyF0Þ�fðyG0Þ�. This proves the first assertion.

The assertion for HF and HG follows immediately by

observing that EfðyF0Þ�EfðyG0Þ is then the dominating

term in Eq. (A.11). &

Theorem 3 (Model selection for nested models). Suppose

that model F is nested by model G and that Assumptions A.1
to A.10 hold. Then

under H0: dþF ¼ dþG , Tð½d̂
þ

F �
2�½d̂

þ

G �
2Þ has an asymptotic

weighted w2 distribution and the weights are the

eigenvalues of the matrix

1

2

�G�1
F LF �G�1

F LFG
G�1
G LGF G�1

G LG

0
@

1
A;

and

under HG: d
þ

F 4dþG , Tð½d̂
þ

F �
2�½d̂

þ

G �
2Þ-þ1.

Proof. From the proof of Theorem 2, we have

½d̂
þ

F �
2�½d̂

þ

G �
2 ¼ EfðyF0Þ�EfðyG0ÞþðET�EÞ½fðyF0Þ�fðyG0Þ�

�1
2 A0F JFAF þ1

2A0GJGAGþopðT
�1Þ:

Under H0: dþF ¼ dþG , because F is nested by G, we must
have fðyF0Þ ¼fðyG0Þ with probability one. Consequently,
EfðyF0Þ�EfðyG0Þ ¼ 0 and ðET�EÞ½fðyF0Þ�fðyG0Þ� ¼ 0.
Therefore, we obtain

½d̂
þ

F �
2�½d̂

þ

G �
2 ¼�

1

2
A0F JFAF þ

1

2
A0GJGAGþopðT

�1Þ

¼
1

2

AF

AG

 !0
�G�1

F

G�1
G

0
@

1
A AF

AG

 !
þopðT

�1Þ:

From Assumption A.10, we have
ffiffiffi
T
p
ðAFAG
Þ-W , where W is a

multivariate normal random vector with mean zero and
covariance matrix C.

Rewrite W as W ¼C1=2Z, where Z is a vector of standard

multivariate normal random vector. Then the limiting

distribution of Tð½d̂
þ

F �
2�½d̂

þ

G �
2Þ can be represented as

1

2
Z0 C1=2

�G�1
F

G�1
G

0
@

1
AC1=2

2
4

3
5Z:



ARTICLE IN PRESS

H. Li et al. / Journal of Financial Economics 97 (2010) 279–301300
Because an orthogonal transformation of a standard

normal random vector is still a standard normal random

vector, the theorem is proved if we can show that the

eigenvalues of

C1=2
�G�1

F

G�1
G

0
@

1
AC1=2

2
4

3
5

are the same as that of

�G�1
F LF �G�1

F LFG
G�1
G LGF G�1

G LG

0
@

1
A:

It is easy to see that matrix

C1=2
�G�1

F

G�1
G

0
@

1
AC1=2

has the same eigenvalues as matrix

�G�1
F

G�1
G

0
@

1
AC1=2

2
4

3
5C1=2

¼
�G�1

F

G�1
G

0
@

1
AC

¼
�G�1

F LF �G�1
F LFG

G�1
G LGF G�1

G LG

0
@

1
A:

Therefore, it follows that, under H0, Tð½d̂
þ

F �
2�½d̂

þ

G �
2Þ is

asymptotically distributed as a weighted w2 distribution.

Under HG, the first two terms in the representation of

½d̂
þ

F �
2�½d̂

þ

G �
2 are the leading terms, and hence the

conclusion of the theorem under HG follows. This

completes the proof of Theorem 3. &

Theorem 4 (Model selection for overlapping models). Sup-

pose models F and G are overlapping models and Assump-

tions A.1 and A.10 hold. Then

under H�0: fðyF0Þ ¼fðyG0Þ with probability one,
Tð½d̂

þ

F �
2�½d̂

þ

G �
2Þ has an asymptotic weighted w2 distribu-

tion, and the weights are the eigenvalues of the matrix

1

2

�G�1
F LF �G�1

F LFG
G�1
G LFG G�1

G LG

0
@

1
A;

and

under H�A: fðyF0ÞafðyG0Þ with positive probability,

Tð½d̂
þ

F �
2�½d̂

þ

G �
2Þ-1 ðeitherþ1 or�1Þ.

Proof. From the proof of Theorem 3, we have

½d̂
þ

F �
2�½d̂

þ

G �
2 ¼ EfðyF0Þ�EfðyG0ÞþðET�EÞ½fðyF0Þ

�fðyG0Þ��
1
2 A0F JFAF þ1

2A0GJGAGþopðT
�1Þ:

Under H�0: fðyF0ÞafðyG0Þ with positive probability,
EfðyF0Þ�EfðyG0Þ ¼ 0 and ðET�EÞ½fðyF0Þ�fðyG0Þ� ¼ 0.
Therefore, we obtain

½d̂
þ

F �
2�½d̂

þ

G �
2 ¼�

1

2
A0F JFAF þ

1

2
A0GJGAGþopðT

�1Þ

¼
1

2

AF

AG

 !0
�G�1

F

G�1
G

0
@

1
A AF

AG

 !
þopðT

�1Þ:
The rest of the proof is similar to that of Theorem 3 and
thus is omitted. &
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