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Due to the transparency of the wireless channel, users in multiple-key environment are vulnerable to eavesdropping during the
process of uploading personal data and re-encryption keys. Besides, there is additional burden of key management arising from
multiple keys of users. In addition, profile matching using inner product between vectors cannot effectively filter out users with
ulterior motives. To tackle the above challenges, we first improve a homomorphic re-encryption system (HRES) to support a single
homomorphic multiplication and arbitrarily many homomorphic additions. +e public key negotiated by the clouds is used to
encrypt the users’ data, thereby avoiding the issues of key leakage and key management, and the privacy of users’ data is also
protected. Furthermore, our scheme utilizes the homomorphic multiplication property of the improved HRES algorithm to
compute the cosine result between the normalized vectors as the standard for measuring the users’ proximity. +us, we can
effectively improve the social experience of users.

1. Introduction

With the rapid development of Internet technology, mobile
devices such as mobile phones and tablets have gradually
become popular in people’s daily life in recent years. Some
social networks such as WeChat, Twitter, and Facebook are
gradually integrated into people’s life, and people would like
to share some opinions, pictures, and videos with others.
+erefore, people are more willing to find potential friends
with similar interests in mobile social networks.

Profile-matching is the most effective way to measure the
proximity between users’ personal profiles. +e user’s per-
sonal profile is often defined as a vector in practical ap-
plications, and each dimension of the vector represents an

attribute corresponding to a hobby, such as football, pho-
tography, and religion. Each attribute value is represented by
an integer between 0 and 10 or a larger range. +e attribute
value indicates the degree of the interest. +e value 0 means
that the user has no interest in the item, and value 10
represents that the user is particularly fond of it. Moreover,
social proximity is often defined as the inner product of two
users’ vectors [1–3]. Since the inner product is the sum of the
products of the corresponding attributes between the two
vectors, it cannot accurately show the proximity between
users. For example, the vector of user A is uA � (3, 4, 7, 8),
user B is uB � (10, 10, 10, 10), and user C is uC � (4, 3, 8, 7).
User A wants to find a person with a higher proximity
between user B and user C. If the inner product of two
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vectors is chosen as a measurement, it is surprising that user
B meets higher requirements than user C. To get more
accurate social proximity results, it is preferred to adopt
cosine proximity result between the two normalized vectors
as the standard.

In addition, users’ profiles often contain sensitive data
and they do not want to expose their personal information.
One way to protect the users’ privacy is to encrypt the data
by cryptographic technologies, but the structure of raw data
will be essentially damaged after encryption, causing diffi-
culties in reprocessing the data. +e homomorphic en-
cryption technology [4–7] has its unique advantages in
encrypted data processing. In particular, partial homo-
morphic encryption technique [8] is more suitable for many
realistic applications [9].

In many existing profile-matching works [1, 10, 11],
a large amount of interactions are often required be-
tween user mobile terminals to obtain matching results,
which will bring heavy computational costs and com-
munication overhead to users. In addition, users also
need to stay online during the matching process. For-
tunately, with the development of cloud computing
technology [12, 13], the cloud platform can provide
users with huge storage space and abundant computing
resources. Outsourcing computing and storage to the
cloud can effectively reduce the burden on the users’
mobile terminals. Gao et al. [2] transfer users’ work to
the cloud with the help of two cooperative but non-
collusive clouds, and users can go offline after uploading
their profiles to the cloud. Gao et al.’s scheme utilizes an
ElGamal-like proxy re-encryption [14] algorithm with
additive homomorphic property, which leads to the
issues of key management and the leakage of re-en-
cryption keys. Furthermore, the ElGamal-like algorithm
requires that the size of the plaintext cannot exceed
40 bits in order to ensure the decryption efficiency; thus
it cannot be applied to the scenarios requiring high data
accuracy.

+e main contributions of our work are as follows:

(i) We improve the HRES algorithm [15] in order to
avoid the drawbacks in [2]. +e improved algorithm
supports one homomorphic multiplication and ar-
bitrarily many homomorphic additions, which can
effectively avoid the key leakage and the key man-
agement issues caused during users’ uploading re-
encryption keys.

(ii) +is paper utilizes the homomorphic multiplication
property of the improved HRES algorithm to
compute the cosine result between the normalized
vectors as the standard for measuring proximity.
Our proposal can effectively ensure the accuracy of
the matching results and improve the social expe-
rience of the users. Furthermore, the improved
HRES algorithm can prove to be semantically secure,
and the profile-matching protocol is also secure in
the sense that both clouds cannot get useful infor-
mation about users’ data under the non-collusion
security model.

1.1. Related Work. +e research on privacy-preserving
profile matching can be mainly divided into two categories,
coarse-grained [16–19] and fine-grained [1, 2, 10] profile-
matching schemes.

1.1.1. Coarse-Grained Scheme. In the coarse-grained profile-
matching schemes, the matching proximity is often defined
as a set intersection or the cardinality of intersections of
user’s attribute sets, but this solution cannot further dis-
tinguish the specific relevance between users. In 2011, Li
et al. [16] proposed two distributed privacy-preserving
profile-matching protocols, which deploy the homomorphic
property of Shamir secret sharing scheme [20] to calculate
the intersections of users’ private sets without relying on a
trusted third party. However, the coarse-grained profile
matching cannot accurately measure the proximity of users.

1.1.2. Fine-Grained Scheme. For the fine-grained profile-
matching schemes [1, 2, 10], user’s preference or behavior
pattern is usually regarded as a multidimensional vector, and
the social proximity is usually measured by the inner
product between two users’ vectors. For example, Zhang
et al. [1] designed a fine-grained profile-matching protocol
with three security levels. A user can initiate a matching
query for their encrypted data with other users and finally
obtains the proximity result by utilizing the homomorphic
addition property of the Paillier cryptosystem [21]. How-
ever, it is required that both users stay online to perform
multiple interactions during the execution of protocols, thus
imposing a heavy communication and computational bur-
den on mobile terminals. To tackle the above issues, Gao
et al. [2] introduced a novel cloud-assisted profile-matching
scheme under multiple keys. +e cloud environment is
composed of two cooperative but non-collusive clouds, and
users in the social application could go offline after
uploading their encrypted data. A friend finder can designate
a target and initiate a matching query to the cloud; then, the
two cloud servers return the matching result to the user
through interactions. In their scheme, the clouds perform
most of the computations, which effectively reduces the
burden of users. And the data providers do not have to stay
online all the time. However, the scheme [2] utilizes a secure
ElGamal-like [14] proxy re-encryption algorithm to encrypt
data, so each user needs to generate their secret keys and re-
encryption keys. Although schemes in a multiple-key en-
vironment could benefit from some existing technologies
[22] that could create secure communicating groups within a
secure group with exchange of small information, multiple
keys increase additional burden of key management in our
consideration. Moreover, it seems impossible to guarantee
users’ privacy once the user’s re-encryption key is leaked in
the process of uploading to the cloud. What is worse, Gao
et al.’s scheme uses the inner product of two vectors to
measure the matching degree. However, the ElGamal-like
algorithm requires the size of the plaintext to be less than
40 bits to make sure that the ciphertext can be efficiently
decrypted using Pollard’s kangaroo algorithm [23] to solve
the discrete logarithm problem for a relatively smaller
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integer.+erefore, the scheme fails to provide high precision
computations on the users’ data.

1.2. Organization. +e rest of the paper is organized as
follows. Section 2 gives some notations and the main part of
the HRES algorithm [15]. Section 3 introduces the system
and adversary models. Section 4 provides the construction of
the improved algorithm and the profile-matching scheme.
Section 5 presents the security proof of the improved HRES
algorithm and the security analysis of the profile-matching
protocol. Section 6 draws conclusions.

2. Preliminaries

In this section, we briefly introduce some notations
appearing in this paper. We also introduce a fundamental
HRES algorithm with two cooperative and non-collusive
clouds and a data normalization method.

2.1.Notation. In this paper, we write x←X for assigning x
a value X and denote the integer set 1, ..., n{ } as [n]. In
addition, a⟶ b indicates that b is calculated by the al-
gorithm a. We use ϕ(·) and λ(·) to denote the Euler and the
Carmichael function, respectively. +e ring Zn means the
residue class ring of integers modulo n, i.e., 0, . . . , n − 1{ }.
We use bold lowercase letters to represent vectors, and the
Euclidean norm for a vector u is denoted as |u|. In ad-
dition, the bit length of an integer a is denoted as |a|. We
use the symbol ⌈ · ⌉ to denote the ceiling function. Besides,
u · v means the inner product of the two vectors u and v,
and we use EPK(·) to denote the encryption function with
the public key PK of the improved HRES algorithm that
will be introduced in the next section.

2.2. Homomorphic Re-Encryption. Re-encryption technol-
ogy supports a proxy transferring decryption authority
without decrypting ciphertext [24]. On this basis, homo-
morphic re-encryption supports homomorphic operation
on ciphertext, which is more suitable for data dissemination
in networks with special needs. In 2017, Ding et al. proposed
a HRES homomorphic re-encryption scheme [15], which
includes two non-collusive cloud servers, CA and CB, that
jointly manage the ciphertext data. +e data owner encrypts
his data with the public key generated by negotiation be-
tween the two cloud servers, and the ciphertexts can be
correctly decrypted only if the two cloud servers cooperate
with each other. +e HRES consists of the following
algorithms.

(i) KeyGen. Given a security parameter κ, let n � pq be
a safe RSAmodulus, where p and q are primes of the
form of p � 2p′ + 1 and q � 2q′ + 1, and p′ and q′
are primes of equal bit length. Let g be an element of
the maximal order λ(n2) � lcm(ϕ(p2),

(q2)) � 2np′q′ inZn2 .+e two cloud servers CA and
CB, respectively, generate their own key pairs:
(skCA � a ∈ Zλ(n2), pkCA � ga(mod n2)) and
(skCB � b ∈ Zλ(n2), pkCB � gb(mod n2)). +erefore,

CA negotiates with CB to generate their Dif-
fie–Hellman key PK � pk

skCB

CA � pk
skCA

CB � gab

(mod n2).
(ii) Enc. Given the Diffie–Hellman key PK and a

message m ∈ Zn, output the ciphertext as follows:
c � EPK (m) � (ξ, ζ) � ((1 + mn)PKr(mod n2),

gr(mod n2)), where EPK(m) indicates the cipher-
text encrypted with PK and r is a random integer
selected from Zλ(n2).

(iii) Partial Dec1. Given skCA � a and a ciphertext
c � EPK(m) ∈ Z2

n2 , the cloud CA can transfer the
above ciphertext into another ciphertext as
EpkCB

(m) � (ξ2, ζ2) � (ξ, ζa
(mod n2)) where

EpkCB
(m) indicates that the ciphertext can be

decrypted with skCB.
(iv) Partial Dec2. Given skCB � b and a ciphertext

EpkCB
(m), the cloud CB can decrypt the plaintext as

follows:

η � ζb
2 � ζab

� g
rab

� PK
r mod n

2
􏼐 􏼑,

m � Ln

ξ
η

􏼠 􏼡 mod n
2

􏼐 􏼑􏼠 􏼡 � Ln(1 + mn),

(1)

where the function Ln(·) is defined as Ln(x) � x − 1/n.

2.3.NormalizationMethod. +is sectionmainly introduces a
common data standardization method: Z-score standardi-
zation method, which standardizes data based on the mean
and variance of the original data. +e processed data obeys
the normal distribution; that is, the mean value of the data is
0 and the standard deviation is 1. +e conversion formula is
as follows:

x
∗

�
x − x

σ
, (2)

where x∗ represents the processed data, x is the mean of the
samples and σ denotes the standard deviation of the samples.

In the proposed scheme, the raw data need to be nor-
malized before processing.+e reason for this operation is that
the values of data from different sources are quite different. In
order to eliminate the influence of different numerical range
and make the data comparable, data need to be normalized.
Hence, Z-scoremethod is adopted tomake the data at the same
level, which is convenient for analyzing the data.

3. System and Threat Model

3.1. SystemModel. As shown in Figure 1, our system model
contains three entities: a friend finder (Alice), the cloud
environment, and other users. Each entity is described as
follows: Alice is marked as a friend finder who wants to find
friends that have similar interests with her in the social
network. +e cloud environment includes two cloud servers,
CA and CB, which can provide users with enormous storage
space for storing personal profiles and a large amount of
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computing resources. +rough cooperating, CA and CB can
help Alice calculate the proximities with other users, and the
privacy of the two users will be not compromised. +ere are
many other users in social networks who prefer to outsource
the encrypted data representing their preferences to the cloud
CA.

Each user registers a personal account in the mobile
social network and then fills in the personal information.
+e personal information contains user’s preferences that
can be used as a measurement for profile matching.
However, the user does not want to reveal his private data
in order to avoid illegal use [25]. Personal profile is often
defined as a multidimensional vector u � (u1, u2, . . . , un),
and each dimension represents an attribute corresponding
to a hobby, such as cooking and tourism. Each attribute
value may be represented by an integer ranging from 0 to
10, or a larger range. +e bigger the number is, the more
the users like the item will be, and vice versa. To better
measure the proximity between users, the cosine value of
normalized vectors with Z-score method is taken in this
paper.

3.2. Dreat Model. In the honest-but-curious model, an
external adversary and an internal adversary are con-
sidered. An external adversary mainly refers to an
eavesdropper who can get some information (e.g.,
encrypted data) through the transparent channel by
eavesdropping. An internal adversary is an honest-but-
curious entity such that he faithfully follow the agreement
but attempt to collect and reveal private information
during the execution of the agreement. +e friend finder
may want to expose other users’ profiles, while the two
clouds may want to reveal the users’ personal data in the
social networks. Moreover, it is assumed that the two
clouds will never collude with each other and the users will
not deliberately attempt to guess the cosine result by
adjusting the vector multiple times.

4. Our Construction

In this section, we give the improved HRES algorithm and
our privacy-preserving profile-matching scheme.

4.1. Improved HRES Algorithm. In order to support ho-
momorphic multiplication computations, a slight modifi-
cation has been made on the original HRES algorithm. Here
it is required that the two clouds CA and CB will not collude
with each other and cooperate to perform decryption op-
erations. +e improved algorithm includes the following
algorithms: KeyGen, Enc, Partial Dec1, Partial Dec2, and
Evaluation.

(i) KeyGen. Choose a large prime integer p. Note that
the multiplicative group Z∗p3 has primitive roots of
order ϕ(p3) � p2(p − 1), and hence the algorithm
can randomly choose a generator g with order
ϕ(p3) � p2(p − 1) from Z∗p3 . +en the two cloud
servers CA and CB, respectively, generate their own
key pairs: (skCA � a ∈ Zϕ(p3), pkCA � ga(modp3))

and (skCB � b ∈ Zϕ(p3), pkCB � gb(modp3)).
+erefore, CA negotiates with CB to generate their
Diffie–Hellman key PK � gab(modp3).

(ii) Enc. Given the Diffie–Hellman key PK and a plain-
text message m, where m ∈ Zp, output the ciphertext
as follows: c � EPK(m) � (ξ, ζ) � ((1 + mp)PKr

(modp3), gr(modp3)), where EPK(m) indicates
the ciphertext encrypted with PK and r is a random
integer selected from Zϕ(p3).

(iii) Partial Dec1. Given skCA and a ciphertext
EPK(m) ∈ Z2

p3 , the cloud CA can transfer the above
ciphertext into another ciphertext as
EpkCB

(m) � (ξ2, ζ2) � (ξ, ζa
(modp3)), where

EpkCB
(m) indicates that the ciphertext can be

decrypted with skCB.

Bob

Outsourced data

Outsourced data···

Other users

Encrypted
profile

Alice

Encrypted
result

CA CB

Figure 1: System model.
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(iv) Partial Dec2. Given skCB and a ciphertext
EpkCB

(m) ∈ Z2
p3 , the cloud CB can output the

plaintext as follows:

η � ζb
2 � ζab

� g
rab

� PK
r modp

3
􏼐 􏼑,

m � Lp

ξ2
η

􏼠 􏼡 modp
3

􏼐 􏼑􏼠 􏼡 � Lp(1 + mp),

(3)

where the function Lp(·) is defined as
Lp(x) � x − 1/p.

(v) Homomorphic evaluation. We first show that the
improved scheme supports k + 1 homomorphic ad-
ditions. Given any k + 1 ciphertexts, namely, for
i � 1, . . . , k+1, ci � EPK(mi) �(ξ(i)

, ζ(i)
)�((1 + mip)

PKri (modp3), gri (modp3))with the underlying
plaintext being mi for i � 1, . . . , k + 1, we firstly
show that our improved algorithm supports k + 1
homomorphic additions.

Specifically, we compute c � (ξ, ζ) � (􏽑
k+1
i�1 ξ

(i)
(mod

p3), 􏽑
k+1
i�1 ζ(i)

(modp3)). Note that

ξ � 􏽙
k+1

i�1
ξ(i)

� 􏽙
k+1

i�1
1 + mip( 􏼁PK

ri � 1 + p 􏽘
k+1

i�1
mi + p

2
􏽘
i≠ j

mimj
⎛⎝ ⎞⎠g

ab%%􏽘
k+1

i�1
ri modp

3
􏼐 􏼑,

ζ � 􏽙
k+1

i�1
ζ(i)

� 􏽙
k+1

i�1
g

ri � g
%%􏽘

k+1

i�1
ri modp

3
􏼐 􏼑.

(4)

From the refreshed ciphertext c � (ξ, ζ), the cloud CA
can use his secret key skCA � a to partially decrypt the ci-
phertext as c2 � (ξ2, ζ2) � (ξ, ζa

(modp3)), where

ξ2 � ξ � 1 + p 􏽘

k+1

i�1
mi + p

2
􏽘
i≠j

mimj
⎛⎝ ⎞⎠g

ab%%􏽘
k+1

i�1
ri modp

3
􏼐 􏼑,

ζ2 � ζa
� g

a%%􏽘
k+1

i�1
ri modp

3
􏼐 􏼑.

(5)

+e cloud CB can further decrypt the ciphertext c2 �

(ξ2, ζ2) using his secret key skCB � b as follows. +e cloud
CB first computes

η � ζb
2 � ζab

� g
ab%%􏽘

k+1

i�1
ri � PK

%%􏽘
k+1

i�1
ri modp

3
􏼐 􏼑.

(6)

Accordingly, it is easy to verify

ξ2
η

� 1 + p 􏽘
k+1

i�1
mi + p

2
􏽘
i≠j

mimj modp
3

􏼐 􏼑, (7)

where the cloud CB can obtain the plaintext

Lp

ξ2
η

􏼠 􏼡 modp
3

􏼐 􏼑􏼠 􏼡modp

� Lp 1 + p 􏽘
k+1

i�1
mi + p

2
􏽘
i≠j

mimj + tp
3⎛⎝ ⎞⎠modp

� 􏽘
k+1

i�1
mi + p 􏽘

i≠j
mimj + tp

2
(modp)

� 􏽘
k+1

i�1
mi(modp).

(8)

Note that |m| + 1<p − |k| should hold, i.e., 􏽐
k+1
i�1 mi <p,

if 􏽐
k+1
i�1 mi(modp) � 􏽐

k+1
i�1 mi is needed. +erefore, our

scheme supports k + 1 homomorphic additions on
ciphertexts.

Now we show that the proposal can perform a homo-
morphic multiplication on two ciphertexts, c1 and c2,
where ci � EPK(mi) � (ξ(i)

, ζ(i)
) with ξ(i)

� (1 + mip)

PKri (modp3) and ζ(i)
� gri (modp3) for i � 1, 2. Specially,

we compute c � (ξ, ζ) � (ξ(1)ξ(2)
(modp3), ζ(1)ζ(2)

(mod
p3)). Note that

ξ � ξ(1)ξ(2)
� 1 + m1p( 􏼁 1 + m2p( 􏼁PK

r1+r2 � 1 + p m1 + m2( 􏼁 + p
2
m1m2􏼐 􏼑g

ab r1+r2( ) modp
3

􏼐 􏼑, (9)
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and ζ � ζ(1)ζ(2)
� gr1+r2(modp3). +e cloud CA can partially

decrypt the ciphertext as c2 � (ξ2, ζ2) � (ξ, ζa
(modp3)),

where ξ2 � ξ � (1 + p(m1 + m2) + p2m1m2)g
ab(r1+r2)(mod

p3) and ζ2 � ζa
� ga(r1+r2)(modp3). +e cloud CB first

computes

η � ζb
2 � ζab

� g
ab r1+r2( ) � PK

r1+r2 modp
3

􏼐 􏼑. (10)

Noting that

ξ
η

� 1 + p m1 + m2( 􏼁 + p
2
m1m2 modp

3
􏼐 􏼑. (11)

+e cloud CB computes

Lp

ξ
η

modp
3

􏼐 􏼑􏼠 􏼡modp

� Lp 1 + p m1 + m2( 􏼁 + p
2
m1m2 modp

3
􏼐 􏼑􏼐 􏼑modp

� Lp 1 + p m1 + m2( 􏼁 + p
2
m1m2 + tp

3
􏼐 􏼑modp

� m1 + m2( 􏼁 + pm1m2 + tp
2

􏼐 􏼑modp

� m1 + m2( 􏼁modp.

(12)

CB could obtain m1 + m2 when |m| + 1< |p|. +en, CB
calculates

ξ/η modp3( 􏼁 − 1 − p m1 + m2( 􏼁

p2 (modp)

�
1 + p m1 + m2( 􏼁 + p2m1m2 + tp3 − 1 − p m1 + m2( 􏼁

p2 modp

�
p2m1m2 + tp3

p2 modp

� m1m2 + tpmodp

� m1m2 modp,

(13)

where the cloud CB obtains the results m1m2(modp). +us,
our scheme supports a homomorphic multiplication oper-
ation on ciphertexts when |m|< |p|/2.

4.2. Privacy-Preserving Profile Matching. In this part, the
improved HRES algorithm is adopted to implement our
privacy-preserving profile-matching scheme. Suppose that
Alice’s vector is v � (v1, . . . , vn) and that Bob’s vector is
u � (u1, . . . , un). +e cosine value of the two vectors can be
calculated as

u · v � u1v1 + · · · + unvn � 􏽘
n

i�1
uivi,

cos(u, v) �
􏽐

n
i�1 u2

i + 􏽐
n
i�1 v2i − 􏽐

n
i�1 ui − vi( 􏼁

2

|u||v|
.

(14)

In particular, cos(u, v) ∈ [0, 1] since ui and vi are
nonnegative integers. Users can encrypt their vectors with
the Diffie–Hellman key PK and then outsource their
encrypted data to CA. +e procedure for the data out-
sourcing is presented in Algorithm 1 and the privacy-pre-
serving profile-matching scheme is shown as Algorithm 2.

5. Correctness and Security

In this section, we firstly give the correctness analysis of our
protocol and then prove that the improved HRES algorithm
is semantically secure with rigorous method. At last, we
prove that our profile-matching scheme is secure under the
semihonest model.

5.1. Correctness. In our scheme, CB can correctly decrypt
and obtain the result of σi(ui

′ − vi
′) without revealing any

useful information. +e demonstration is shown as follows.
Firstly, CA computes

E
p− 1
PK2

vi
′( 􏼁 ≡ 1 + vi

′p( 􏼁
p− 1

PK
(p− 1)ri , g

(p− 1)ri􏽮 􏽯modp
3

≡ 1 + vi
′p(p − 1) + C

2
p− 1 vi
′p( 􏼁

2
􏼐 􏼑PK

(p− 1)ri , g
(p− 1)ri􏽮 􏽯modp

3
.

(15)

We can verify that

EPK2
ui
′( 􏼁 · E

p− 1
PK2

vi
′( 􏼁

≡ 1 + ui
′p( 􏼁PK

ri
′
, g

ri
′

􏼚 􏼛 · 1 + vi
′p(p − 1) + C

2
p− 1 vi
′p( 􏼁

2
􏼐 􏼑PK

(p− 1)ri , g
(p− 1)ri􏽮 􏽯modp

3

≡ 1 + ui
′ − vi
′( 􏼁p + vi

′ − ui
′vi
′ + C

2
p− 1 vi
′( 􏼁
2

􏼐 􏼑p
2

􏼐 􏼑PK
(p− 1)ri+ri

′
, g

(p− 1)ri+ri
′

􏼚 􏼛modp
3
.

(16)
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Input: A user Bob wants to outsource his personal profile to CA and holds a private vector u � 〈u1, . . . , un〉.
Output: +e encrypted result EPK(u′), EPK(τ1σB) and EPK(sB) are sent to CA.
(1) CA executes KeyGen algorithm of the improved HRES algorithm with CB to generate their respective key pairs

〈pkCA, skCA〉〈pkCB, skCB〉 and their Diffie–Hellman key PK2. +ereafter, PK2 is issued to the users in social networks.
(2) Firstly, Bob normalizes his vector with Z-score method and then converts each element of the normalized vector to an integer by

multiplying it with a pretreatment public integer l1 and ceiling. Finally, Bob gets his matching vectoru′ � 〈u1′, u2′, ..., un
′〉 and

calculates sB � 􏽐
n
i�1 u′21, σB � 􏼆

􏼌􏼌􏼌􏼌u′|􏼇.
(3) Bob negotiates with the CA to run the Diffie–Hellman key exchange protocol to generate a secret random integer τ1.
(4) After encrypting the following values: EPK2

(u′)←〈EPK2
(u1′), EPK2

(u2′), . . . , EPK2
(un
′)〉, EPK2

(sB), and EPK2
(τ1σB), Bob uploads

these encrypted values to CA.

ALGORITHM 1: Data outsourcing.

Input: Alice’s private vector v � 〈v1, . . . , vn〉, and the secret keys of CA and CB.
Output: Alice gets the cosine result cos(u′, v′).
(1) Alice executes the KeyGen algorithm of the improved HRES algorithm with CA to generate their respective key pairs 〈pkA, skA〉,

〈pkCA
′ , skCA
′ 〉 and their Diffie–Hellman key PK1. +en, PK1 is assigned to the cloud CB.

(2) Alice sends her encrypted profile to CA for querying the proximity with Bob in the social networks.

(i) Alice also needs to process her normalized vector with the public number l1 to get the result v′ � 〈v1′, ..., vn
′〉, and calculates

sA � 􏽐
n
i�1 v′21, σA � 􏼆

􏼌􏼌􏼌􏼌v′|􏼇.
(ii) Alice negotiates with CA to run the Diffie–Hellman key exchange protocol to generate a secret random integer τ2.
(iii) Alice uploads the encrypted values EPK2

(v′), EPK2
(τ2σA), and EPK2

(sA) to CA.

(3) CA generates random integers σi and works out the following formulas:

(i) EPK2
(ui
′) · E

p− 1
PK2

(vi
′)⟶ EPK2

(ui
′ − vi
′).

(ii) E
σi

PK2
(ui
′ − vi
′)⟶ EPK2

(σi(ui
′ − v′)i).

Next, CA computes EPK2
(τ1σB) · EPK2

(τ2σA); executes the Partial Dec1 algorithm to process EPK2
(σi(ui
′ − vi
′)) and EPK2

(τ1σB) ·

EPK2
(τ2σA) with its secret key skCA; and then sends the processed results to CB.

(4) CB runs the Evaluation algorithm with its secret key skCB to decrypt EPK2
(τ1σB) · EPK2

(τ2σA) and gets β1 where β1 � τ1τ2σAσB.
(5) CB runs the Partial Dec2 algorithm with its secret key skCB to decrypt EPK2

(σi(ui
′ − v′)i) and compute σi(ui

′ − vi
′) · σi(ui

′ − vi
′).

Next, CB sends the encrypted values EPK2
(σ2i (ui
′ − v′)2i ) to CA.

(6) CA computes

(i) E
σ− 2

i

PK2
(σ2i (ui
′ − vi
′)2)⟶ EPK2

((ui
′ − vi
′)2).

(ii) EPK2
(sA) · EPK2

(sB) · E
p− 1
PK2

(􏽐
n
i�1 (ui
′ − vi
′)2)⟶ EPK2

(2u′ ∘ v′).
(iii) E2− 1

PK2
(2u′ ∘ v′)⟶ EPK2

(u′ ∘ v′).

After that, CA generates a random integer ω and calculates Eω
PK2

(u′ ∘ v′). Finally, CA runs Partial Dec1 algorithm to decrypt
Eω

PK2
(u′ ∘ v′) and sends the results to CB.

(7) CB computes the obfuscated proximity result and sends it to CA.

(i) CB runs the Partial Dec2 algorithm to decrypt Eω
PK2

(u′ ∘ v′) and obtains ω · u′ ∘ v′.
(ii) CB processes the value β1 with a pretreatment public integer l2, computes l2 · 1/β1 � l2 · (τ1τ2σAσB)− 1, and then gets an

integer number β2 where β2 � 􏼆l2 · 1/β1􏼇.
(iii) CB computes EPK1

(ωβ2 · u′ ∘ v′) with the public key PK1 and then sends it to CA.

(8) CA computes the formula E
τ1τ2ω− 1

PK1
(ωβ2 · u′ ∘ v′)⟶ EPK1

(τ1τ2β2 · u′ ∘ v′), runs the Partial Dec1 algorithmwith its secret key skCA
′

to process EPK1
(τ1τ2β2 · u′ ∘ v′), and sends the results to Alice.

(9) Alice runs the Partial Dec2 algorithm with her secret key skA and uses l2 to get (τ1τ2β2 · u′ ∘ v′)/l2 which is very close to the
matching result u′ ∘ v′/|u′||v′| � cos(u′, v′).

ALGORITHM 2: Privacy-preserving profile-matching scheme.
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+en, CA generates the random integers σi to obfuscate
EPK2

(ui
′ − vi
′), and the final result can be obtained through

the following formula:

E
σi

PK2
ui
′ − vi
′( 􏼁

≡ 1 + ui
′ − vi
′( 􏼁p + vi

′ − ui
′vi
′ + C

2
p− 1 vi
′( 􏼁
2

􏼐 􏼑p
2

􏼐 􏼑
σi

PK
σiri(p− 1)+σiri

′
, g

σiri(p− 1)+σiri
′

􏼚 􏼛modp
3

≡ 1 + σi ui
′ − vi
′( 􏼁p + X( 􏼁PK

σiri(p− 1)+σiri
′
, g

σiri(p− 1)+σiri
′

􏼚 􏼛modp
3
,

(17)

where X�(C2
σi

(ui
′ − vi
′) + σi(vi

′ − ui
′vi
′ + C2

p− 1(vi
′)2))p2. Hence,

CB can obtain σi(ui
′ − vi
′)modp. +en, CB calculates

σ2i (ui
′ − vi
′)2modp � σ2i (ui

′ − vi
′)2 when 2|σi| + 2|max ui

′,􏼈

vi
′}|<p, and it cannot reveal information about ui

′ and vi
′.

On the other hand, we will prove that Alice can obtain a
more accurate cosine result as follows.

Once CA receives EPK2
(σ2i (ui
′ − vi
′)2), it can remove the

blinding values σ2i by computing E
σ− 2

i

PK2
(σ2i (ui
′ − vi
′)2)⟶

EPK2
((ui
′ − vi
′)2), and then it computes the following

formulas:

(i) EPK2
((ui
′ − vi
′)2) , . . . , EPK2

((un
′ − vn
′)2)⟶ EPK2

(􏽐
n
i�1 (ui
′ − vi
′)2).

(ii) EPK2
(sA) · EPK2

(sB) · E
p− 1
PK2

(􏽐
n
i�1 (ui
′ − vi
′)2)⟶EPK2

(2u′ ∘v′).
(iii) E2− 1

PK2
(2u′ ∘ v′)⟶ EPK2

(u′ ∘ v′).

+en, CA obtains EPK2
(ω · u′ ∘ v′) with the blinding

value ω. CB decrypts the ciphertext, computes l2
(ω · u′ ∘ v′/τ1τ2σAσB), and then encrypts the ceiling result
with PK1. +us, CA can compute and get E

τ1τ2ω− 1

PK1
(ωβ2 ·

u′ ∘ v′)⟶ EPK1
(τ1τ2β2 · u′ ∘ v′). We find that when the

pretreatment number l2 is large, (τ1τ2β2 · u′ ∘ v′) is closer to
the cosine result cos(u′, v′).

5.2. Security Proof of ImprovedAlgorithm. In this subsection,
the semantic security of the improved HRES algorithm is
proved through three theorems. We first prove that the
DDH problem in G (the cyclic group of modulo p3) is hard
to solve. Based on this conclusion, the improved HRES
algorithm could be semantically secure.

Theorem 1. Let G be the cyclic group of modulo p3, and g be
a generator ofG.De discrete logarithm problem (inG) is hard
to solve.

Proof. For the sake of contradiction, it is assumed that the
discrete logarithm problem (in G) is not difficult; i.e., there
exists an oracle that can solve the discrete logarithm problem
(in G) in polynomial time. For example, given an input
A ≡ gamodp3, the oracle returns the index a as output.

(1) Note that, if g is a generator of Zp and satisfies
gp− 1 ≠ 1mod p2, g is also a generator of G. Our
strategy is as follows. Let B ≡ gbmod p, we can

assume that there exists an integer b′that sat-
isfies B ≡ gb′mod p, such that the equation b ≡
b′modϕ(p) holds. Multiply simultaneously both
sides of the equation by p2 and the equation
bp2 ≡ b′p2modϕ(p3) can be obtained. +us, it has
gbp2 ≡ gb′p2modp3.
Since B ≡ gb′mod p, B can be denoted as B � gb′ +

kp where k is an integer. +us, Bp2 can be written as
the following formula:

B
p2

� g
b′

+ kp􏼒 􏼓
p2

� g
b′p2

+ C
1
p2kp g

b′
􏼒 􏼓

p2− 1
+ · · · + (kp)

p2
.

(18)

We can obtain Bp2 ≡ gb′p2mod p3. +en, we query
the oracle for solving the discrete logarithm problem
in G to get the result b′p2 with gb′p2mod p3 as input.
And of course b′ can be solved out. +is implies that,
if the discrete logarithm problem in G were not
difficult, the discrete logarithm problem in Zp turns
out to be easy as well. It is contradictory obviously.

(2) If g is a generator of Zp and satisfies
gp− 1 ≡ 1mod p2, g + p is also the generator that
belongs to both Zp and G. +e proof process is
similar to the above one and we will not describe it
here.

Theorem 2. Let p be a large prime. Let G be the cyclic group
of modulo p3, and g be a generator of G. De Decisional
Diffie–Hellman problem (in G) is difficult.

Proof. For the sake of contradiction, it is assumed that the
Decisional Diffie–Hellman (in G) is not difficult. It means
that there exists an adversaryAD D H who can find a random
integer z such that gxy ≡ gzmodp3. We assume that R is a
random quadruple and D is a DH quadruple, where R �

〈g, gx, gy, gz〉 and D � 〈g, gx, gy, gxy〉.

(1) Note that, if g is a generator of Zp and satisfies
gp− 1 ≠ 1modp2, g is also a generator of G. If AD D H

can find a random integer z that satisfies
gxy ≡ gzmodp3, xy ≡ zmod ϕ(p3) can be derived.
Hence, equation xy ≡ zmod (p − 1) holds. Besides,
since g is a generator of Zp, we can also get the
equation gxy ≡ gzmodp. We thus state that if there
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exists an adversary ADDH who can distinguish the
random quadruple R from DH quadruple D, ADDH

can also distinguish R and D in Zp. However, the
DDH assumption in Zpis difficult, so the original
hypothesis does not hold. +us, we can get a
conclusion that DDH assumption (in G) is also
difficult.

(2) If g is a generator of Zp and satisfies gp− 1 ≡
1mod p2, then g + pis also the generator that be-
longs to both Zp and G. +e proof process is
similar to the above one and we will not describe it
here.

Theorem 3. If Decisional Diffie–Hellman assumption in Z∗p3

holds, the improved HRES algorithm Π presented in Section
5.1 is semantically secure.

Proof. During the KeyGen phase, the cloud servers CA and
CB negotiate with each other to generate their Dif-
fie–Hellman key. Due to the difficulty of discrete logarithm
problem in Z∗p3 , it is negligible to get any information
about sk1, sk2, or sk1 · sk2 for any adversaries.

For the sake of contradiction, it is assumed that the
scheme Π is not semantically secure; i.e., there exists a
polynomial time adversary AΠ which can break semantic
security with nonnegligible probability ξ. AΠ constructs a
distinguisher β that can solve the DDH problem in Z∗p3 . +e
construction is as follows.

Given a challenge quadruple ζ � 〈g, ga, gb, T〉, where
a, b ∈ Z∗p3 , the goal of the distinguisher β is to determine
T � gab or T � R, where R is a random integer in Z∗p3 . +e
challenger sends the public key PK � ga to the adversary AΠ.
+en, the adversary AΠ submits two challenge messages
(m0, m1) of equal length to the challenger based on his prior
knowledge, and then the challenger returns C � (gb, T(1 +

m dp))modp3 as a challenge ciphertext to the adversary AΠ,
in which d ∈ 0, 1{ }. Finally, the adversary outputs d′ as the
guess result. If d � d′, the challenger outputs T � gab;
otherwise, it outputs T � R. +e discussion is as follows:

(1) If T � gab, then C is a valid ciphertext and the
probability of adversary guessing correctly is equal to
1/2 + ξ.

(2) If T � R, then R(1 + mp) is independent of the
encrypted message because the random value R is
uniformly and randomly distributed among Z∗p3 .
+erefore, the probability that the adversary guesses
correctly is 1/2.

As a result, if the distinguisher can break the scheme Π
with a nonnegligible probability ξ, the adversary AΠ can
attack the DDH assumption inZ∗p3 with the same advantage.
For the reason that the DDH assumption in Z∗p3 is difficult,
our improved scheme Π is semantically secure.

5.3. Security Analysis of Our Protocol. +e security analysis
of our privacy-preserving profile-matching scheme under
the semihonest model will be presented in this subsection

with a real and ideal paradigm [2, 26]. For any adversaries
who attack a real protocol execution, there exists an ad-
versary who attacks an ideal execution, such that the input
and output distributions of the adversary and participants in
both the real and the ideal executions are fundamentally the
same.

Theorem 4. Our profile-matching scheme described in
Section 5 can securely obtain the matching result through the
calculations on ciphertexts under the semihonest and non-
collusive adversaries.

Proof. In this scheme, there are mainly four parties: Alice,
Bob, CA, and CB. We can construct four simulators Sim �

〈SimA, SimB, SimCA, SimCB〉 against four types of adver-
saries 〈AA,AB,ACA,ACB〉 that will corrupt the privacy of
Alice, Bob, CA, and CB, respectively.

SimA simulates AA as follows: After receiving the nor-
malized vector v′ � 〈v1′, v2′, . . . , vn

′〉, SimA encrypts v′ and
􏽐

n
i�1 v′2i , respectively, to get EPK2

(v′) and EPK2
(sA). +en,

SimA chooses a random integer τ2 and encrypts τ2􏼘
������

􏽐
n
i�1 v′2i

􏽱

􏼙

into EPK2
(τ2σA). SimA randomly picks a vector

U′ � 〈􏽢u1, 􏽢u2, . . . , 􏽢un〉, computes EPK2
(τ1τ2β2 · U′ ∘ v′), and

sends the partial decryption result EPKA
(τ1τ2β2 · U′ ∘ v′)

processed by its secret key to AA. +e view of AA involves the
normalized vector v′ � 〈v1′, v2′, . . . , vn

′〉, the encrypted results
set {EPK2

(v′), EPK2
(sA), EPK2

(τ2σA), EPKA
(τ1τ2β2 · U′ ∘ v′)},

and the decryption result cos(U′, v′). +e view of AA in real
and ideal executions is indistinguishable owing to the se-
mantic security of the improved HRES scheme mentioned
above.

SimB simulates AB as follows: After receiving the nor-
malized vector U′ � 〈u1′, u2′, . . . , un

′〉, SimB encrypts U′ and
􏽐

n
i�1 u′2i , respectively, to get EPK2

(U′) and EPK2
(sB). After

that, SimB chooses a random integer τ1 and encrypts

τ1􏼘
������

􏽐
n
i�1 u′2i

􏽱

􏼙 into EPK2
(τ1σB). +en SimB sends the

encrypted results to AB. +e view of AB involves the nor-
malized vector U′ � 〈u1′, u2′, . . . , un

′〉 and the encrypted re-
sult set EPK2

(U′), EPK2
(sB), EPK2

(τ1σB)􏽮 􏽯. +e view of AB in
real and ideal executions is indistinguishable owing to the
semantic security of the improved HRES scheme mentioned
above.

SimCA simulates ACA as follows: SimCA randomly picks
two vectors U′ � 〈􏽢u1, 􏽢u2, . . . , 􏽢un〉 and v′ � 〈􏽢v1, 􏽢v2, . . . , 􏽢vn〉.
+en, SimCA encrypts them as EPK2

(U′), EPK2
(v′), EPK2

(sB),
and EPK2

(sA). SimCA generates two random integers τ1, τ2;
respectively, obtains the encrypted values EPK2

(τ1σB)· EPK2

(τ2σA); and partially decrypts the above result. Finally, it
generates random integers σi, ω and computes
EPK2

(σ2i (ui
′ − vi
′)2)σ

− 2
i , EPK2

(ωU′ ∘ v′), and EPK1

(τ1τ2β2 · U′ ∘ v′). +e view of ACA in the real and ideal
executions is indistinguishable owing to the semantic se-
curity of the improved HRES scheme mentioned above.
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SimCB simulates ACB as follows: SimCB chooses random
integers ri, mi, ti, where i ∈ [n], and then encrypts them as
(EPK2

(mi) · E− 1
PK2

(ti))
ri , EPK2

((rimi)
2). +en, it picks a

random number s and encrypts it as EPK1
(s), EPK2

(s).
SimCB re-encrypts them with the secret key of CA and sends
the values (EPK2

(mi) · E− 1
PK2

(ti))
ri , EPK2

((rimi)
2), EPK1

(s),
EPK2

(s), ri(mi − ti), and (rimi)
2 to ACB. +e view of ACB is

the above encrypted values and some obfuscated data.
Although ACB can decrypt and obtain the obfuscated data,
the random numbers selected by the simulator are uni-
formly and randomly distributed in the message space, so
they are the obfuscated messages. +e view of ACB in real
and ideal executions is indistinguishable owing to the se-
mantic security of the improved HRES scheme mentioned
above.

6. Evaluation

6.1. Comparison. In this subsection, we mainly discuss the
advantages of our scheme compared with the existing
privacy-preserving profile-matching schemes [1, 2, 11, 27]
in Table 1. +ese schemes [1, 11, 27] require users to stay
online simultaneously to obtain matching results through
multiple interactions, resulting in additional computa-
tional costs and communication overheads on mobile
devices of users. In our scheme, users only need to encrypt
their personal profiles and upload them to the cloud, and
then they can go offline. For a Friend finder, he can
designate a target to initiate a matching query and

ultimately get the matching result. Most computations are
undertaken by the two cloud servers, which can greatly
reduce the burden of users. Compared with the scheme in
[2], the users do not need to upload the re-encryption keys
when uploading their encrypted data, thereby avoiding
the risk of the users’ personal data leakage due to the re-
encryption key leakage and reducing the burden of the key
management. We use the cosine scores of two vectors as
the matching result instead of the intersection of two sets
or the inner product of two vectors. In particular, the
proposed scheme supports processing larger data.
+erefore, the proposed scheme is fine-grained, and the
precision of matching result is high.

6.2. Simulation. In order to better demonstrate the per-
formance of our scheme and compare it with Gao’s scheme
[2], we simulated two profile-matching protocols separately.
Simulations are conducted using the PBC library on a
computer equipped with a 2.5GHz Intel core i5-3210
processor with 4GB of RAM. +e dimension n of users’
vector is set as 20, and we compared the two system per-
formances with the increase in the number of the data bits.
+e results are shown in Figures 2 and 3. More intuitive
comparison results are shown in Figure 4. As the number of
data bits increases, the decryption time of Gao’s scheme will
increase exponentially, and the time spent by cloud servers
and users increases. Specifically, our scheme has no limit on
the length of the data. And as the length increases, the time
consumed does not change significantly.

Table 1: Comparison with other profile-matching schemes.

Scheme Noninteractive High precision Fine-grained Single key
Our scheme Yes Yes Yes Yes
Scheme [1] No No Yes Yes
Scheme [2] Yes No Yes No
Scheme [11] No No Yes Yes
Scheme [27] No Yes Yes Yes
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Figure 2: Computational costs of Gao’s scheme with the increase in data bits.
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6.3. ComplexityAnalysis. In this subsection, we review some
existing conclusions before analyzing the computational
complexity of our scheme. +e complexity of calculating
modular multiplication and modular exponentiation is
O(log2 p) and O(log3 p), respectively, where p is the
modulus.

First, we analyze the computational complexity of the
improved HRES algorithm. +e Enc involves two modular
multiplications, a modular addition and two modular ex-
ponentiations. Hence, the computational complexity of this
part is O(log3 p). +e Partial Dec1 only needs a modular
exponentiation, so the computational complexity is
O(log3 p). Similarly, the Partial Dec2 involves a modular
exponentiation, a modular inversion, a modular multipli-
cation, a subtraction, and a division. Hence, the

corresponding computational complexity is O(log3 p). On
this basis, we could deduce that the computational com-
plexity of the procedure executed by Alice is O(log3 p), and
the same for Bob, CA, and CB.

7. Conclusion

In this paper, we propose a privacy-preserving profile-
matching scheme over improved HRES algorithm in mobile
social networks. +e improved algorithm can support one-
time homomorphic multiplication and arbitrarily many
homomorphic additions. Compared with the original
scheme [2], the key management burden can be reduced,
and the privacy problem of users caused by the re-en-
cryption keys leakage can be effectively solved. In addition,
our scheme utilizes the cosine result between two normal-
ized vectors as the standard for measuring the users’
proximity, which can effectively improve the social expe-
rience of the users. Even if users with ulterior motives
collude with one of the clouds, the personal data of other
users will not be revealed. At last, we prove that our scheme
is secure under the semihonest model through strict security
analysis.
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