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Abstract
The well-known Wall Street adage that states, ‘‘It takes volume to make prices

move’’ has long suggested that there exists a positive correlation between absolute

changes in stock price and trading volume. To practitioners who use technical

analysis as their trading tool, trading volume has always been treated as a key signal

to price change. Although many studies have empirically examined the nonlinear

relationship between price change and trading volume, very few studies are able to

provide a persuasive explanation for such price-volume relationship. This paper fills

this gap by providing an explanation for such relationship under a framework of

heterogeneous agent model with evolutionary switching mechanism. With the

support of US stock market data, we first summarize some stylized facts on stock

return and trading volume. We then mimic these facts using our model. The

comparison between simulated and ‘‘real’’ time series shows that our model is not

only able to replicate the seemingly chaotic fluctuations of the financial market but

also able to explain how stock prices and trading volumes co-evolve with agents’

belief.
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1 Introduction

In the analysis of financial market, much attention has been drawn to the study of

assets price. Another important indicator of financial activities, trading volume, is

ignored in many studies. Volume represents the total amount of transactions in a

risky asset or entire market during a specific period of time. In the technical

analysis, volume can be used to measure the relative worth of market move. A high

volume during the price move always implies a strong market. The information

roles of volume have been discovered by practitioners. As the old Wall Street adage

asserts, ‘‘it takes the volume to move prices’’.

The relationship between price and trading volume is an important topic in

financial markets. However, few theories or models are developed to explain this

relationship. As few paper discuss the characteristics of trading volume in the

market, we try to generalize and summarize some stylized facts of trading volume

first. Stylized facts like unit root and auto-regressive correlation can be easily tested

using statistical tools, but several stylized facts can only be observed visually. These

visual observed features are widely used in practice, so it is necessary to investigate

them when study trading volume. One visualized stylized fact concerning volume is

that a dramatic change in prices is always accompanied by significant volumes. This

feature is frequently found in crisis periods. Figure 1 is the illustration of this

phenomenon in 2008 financial crisis. We can clearly see that the Dow Jones Index

experienced a sharp decline in the mid-2008 and fell to the bottom subsequently in

the early 2009. At the same time the volume also surged and hit to an unprecedented

level. Other similar examples are Black Monday in 1987 and Asian Financial crisis

in 1997. The second visualized stylized fact is that trading volume is an important

confirmation signal of price action in technical analysis. For example, if investors

Fig. 1 Dow Jones index and trading volume during 2008 global financial crisis
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observe a sudden increase in trading volume, they can confirm the breakout of price

to the trend-line (see Murphy (1999) and Bulkowski (2011)). Figure 2 illustrates this

fact in shares of Google. Its stock price fluctuated below the resistance line (around

575) for a long time until suddenly jumped up to around 660 in July 17, 2015.

Meanwhile, the volume was almost five times the average value. After that the price

moved up and down above the previous resistance level. The huge volume can be

recognized as the signal to confirm that price breaks out the old regime and enters a

new one.

In addition, the statistical relationship between price and volume has received

considerable attention in a large amount of empirical research. Karpoff (1987)

points out that volume could correlate positively with the elements of both the

absolute change of price or the price change per se. Although an early empirical

study by Granger and Morgenstern (1963) fails to find a correlation between price

index and aggregated volume in New York Stock Exchange (NYSE) , succeeding

studies have found evidence of positive correlation. Since 1990s, the dynamic

(causal) correlation between price and volume has drawn a lot of attention. Bivariate

vector autoregressive (VAR) models and Granger causality tests are used to

investigate the price-volume relation. Saatcioglu and Starks (1998) find evidence

that volume leads to price change. Statman et al. (2006) use monthly data from

NYSE and find the positive relation between trading activities and lagged return. By

using S&P 500 data from 1973 to 2008, Chen (2012) finds that trading volume does

not Granger cause stock return, but return Granger causes volume. Apart from the

linear model, Hiemstra and Jones (1994) apply nonlinear Granger causality tests to

investigate the price-volume relationship in the US market. They find evidence of

significant bidirectional nonlinear causality between returns and volumes. More-

over, Diks and Panchenko (2006) modify the method of nonlinear causality test to

improve the performance, and find weak nonlinear causality between returns and

volumes. Although much literature has proven that Granger causality exist between

Fig. 2 Google stock and trading volume (2014–2015)
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volumes and returns, the significance and directions are still controversial. To have a

clearer view on price-volume relation, we reexamine the linear and nonlinear

Granger causality between returns and volume changes. We use both S&P 500 and

Dow Jones index daily data, the range of the sample is from 1/1/2010 to 12/31/2016.

The method of linear and nonlinear Granger causality tests are provided in

Appendix A and the results are reported in Tables 8 and 9, respectively. We find

evidence that returns Granger cause volumes in the linear test, which is consistent

with the results in Chen (2012). For the nonlinear test, we find weak Granger

causality between specific lagged returns and volume changes in S&P500 data, but

fail to find the causality relation in Dow Jones index. To further investigate the

nonlinearities of stock price-trading volume relation, we refer to the information

transfer in the literature. A recent study by Behrendt and Schmidt (2021) find the

nonlinear information flow from returns to trading volume growth by using Shannon

transfer entropy. The significant cross-correlation between stock price and trading

volume is also found in Zhang and Shang (2021) in the framework of dispersion

conditional mutual information (DCMI).

Beside the price-volume casual relation, it is also worth investigating the

correlation between volume and volatility. Clark (1973) shows that the squared

price changes are positively related to volumes. Daigler and Wiley (1999) find

positive volume and volatility relation in the future market, and highlight that this

relation is driven by the existence of different types of investors. In practice, the

positive relation between volume and volatility can be easily found in current stock

market. A recent example is the significant positive correlation between volatility

and volume in US stock market during 2008 financial crisis. In practice, Chicago

Board Options Exchange (CBOE) Volatility Index is frequently used to measure the

stock market volatility. As shown in Fig. 3, the fluctuation of Volatility Index (VIX)

is followed by the similar movement of S&P 500 trading volume. Just by eye-

balling the trends of trading volumes and VIX in Fig. 3, there appears to be a strong

inter-temporal correlation. To further check this correlation, we plot the correlation

Fig. 3 S&P 500 volume and the VIX
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chart and present it in Appendix C Fig. 21. We find a strong positive relation

between volume and VIX with a significant coefficient correlation 0.725.

While ample studies focus on the detection of price-volume relationship, very

few of them have explained why such patterns exist and how the relation evolves in

the market. Even some theoretical studies attempt to explain this relationship, few

models are able to address all the stylized facts as mentioned above. Due to the

complexity of price-volume dynamic, nonlinear dynamic models have been drawn

attention in the past decades. Granger (2014) argues that univariate and multivariate

nonlinear models represent the proper way to model a real world that is almost

certainly nonlinear. Since the sudden crisis in 1987, many studies have worked on

the nonlinear models to detect and explain the well known stylized facts in financial

markets. At the same time, behavioral finance with bounded rationality assumption

rises to compete with traditional financial models with Efficient Market Hypothesis

(EMH). As argued by Thaler (2005), behavior finance is a new approach to explain

some abnormal regularities of financial markets, in response to the difficulties faced

by traditional paradigm. The heterogeneous agent model (HAM) is one of the

nonlinear behavioral models that has been widely used to explain complexity of

financial markets, and it has been proven to be very powerful on asset pricing,

replicating the stylized facts and explaining different features of financial market,

such as crises, crushes and bubbles. Pioneering contributions in this direction

include Beja and Goldman (1980), De Long et al. (1990), Day and Huang (1990),

Brock and Hommes (1998), Lux (1995, 1998), Farmer and Joshi (2002), Chiarella

and He (2003), Huang et al. (2010).

In this paper, we aim to build a HAM with trading volume. We mainly

investigate how the prices, volumes and beliefs co-evolves in the stock market

within fundamentalist-chartist framework. To evaluate the fitness of our model to

real financial markets, we examine its capability of replicating the well known

stylized facts in the market. As shown in the current literature, most of the HAMs

have the ability to explain stylized facts concerning price or return. These stylized

facts and strand of literature include: non-stationary price and stationary return

(Hommes (2002)), fat tail (Lux (1998)),volatility clustering (Lux and Marchesi

(2000), Hommes (2002)), leverage effect (Huang et al. (2013), Chen et al. (2013)),

asymmetric returns (Huang et al. (2013)) and the power law of return (He and Li

(2007), He and Zheng (2016)). Regrettably, little attention has been paid so far to

volume except Brock and LeBaron (1995), Chen and Liao (2005), Westerhoff

(2006) and Lespagnol and Rouchier (2018). Brock and LeBaron (1995) develops an

adaptive beliefs model, and the model is able to reproduce the slowly decaying

autocorrelation function of volatility and trading volume, but other stylized facts

and co-evolvement of price and volume have not been fully investigated. Chen and

Liao (2005) attempt to use an agent-based stock markets (ABMs) model to

determine the price-volume series and reproduce the presence of the nonlinear

Granger causality relation between the price and volume, but the simulation results

are unpersuasive. Westerhoff (2006) builds a HAM by incorporating volume into

chartist trading rule, but he just focuses on the price-volume signal for trading

breaks. Lespagnol and Rouchier (2018) explore whether trading volume and price
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distortion can be explained by the investor’s bounded rationality in the HAM

framework.

To fill the gap of HAM on volume, we develop a simple HAM with trading

volume. Comparing to previous HAMs, our model has greater potential to simulate

the features of financial market. The contribution is threefold: First, our model is

able to generate most of stylized facts both on price and volume. Second, the co-

evolvement of prices, volumes and beliefs can be found in our simulation. Third,

our model can explain the formation of different chart patterns, bubbles and crises,

which provide theoretical support for technical analysis.

The rest of the paper is organized as follows. Section 2 describes the model.

Section 3 presents the simulation results and verifies model’s capability to explain

market dynamics, including stylized facts, price dynamics, volume dynamics,

bubble and crises formation and the co-evolvement of price changes, volumes and

beliefs. Section 4 concludes.

2 Model

2.1 Heterogeneous Investors

Following the standard HAM literature (see for example Day and Huang (1990),

Lux (1995), Brock and Hommes (1998), Chiarella and He (2003) Westerhoff and

Dieci (2006) and Lux (2021)), we consider a market with only one risky asset and

two types of agents, namely fundamentalists and chartists. We assume that these

agents are bounded rational and hold heterogeneous beliefs on future price trend.

While fundamentalists form their expectations on future price and adopt trading

strategies based on market fundamental factors, such as dividends, profits and

economic growth, chartists focus on technical analysis. They use historical price

trends or chart patterns as essential elements to form their expectations and hence

trading strategies. A market maker who adjusts market price in response to

aggregate demand from fundamentalists and chartist is also included in the model.

2.1.1 Fundamentalists

Fundamentalists are assumed to have full information about fundamental value lft .
They believe that asset price will not deviate from this value for long, and they

expect price to fluctuate within a reasonable zone of ðmt;MtÞ due to some short term

external disturbances. The price will eventually converge to its fundamental value.

As a result, fundamentalists buy assets when the price is below its fundamental

value and sell otherwise. Accordingly, their demand function is written as:

Df
t ¼

ðlft � pt�1ÞAðlft ; pt�1Þ; pt 2 Q

0; pt 62 Q

(
ð1Þ

where Q ¼ ½mt;Mt� is the reasonable price zone, mt and Mt are the minimum and

maximum of the price boundaries, respectively and Að�Þ is a chance function with
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respect to lft and pt�1. This function demonstrates the psychological behavior of

investors Day and Huang (1990). It shows that when price is closer to the upper

boundary of the price zone Mt, the chance of losing the existing gains increases.

Likewise, when price is closer to the lower boundary of the price zone mt, the

chance of missing a capital gain by failing to buy is high1. Fundamentalists are

assumed to update information Xt in each period to obtain more accurate funda-

mental value of the risky asset. Instead of using a constant fundamental value, we

assume that they adjust the value according to the following rule:

lftþ1 ¼ gðtÞlft ð2Þ

where g(t) is the simulated business cycle such that:

gðtÞ ¼
g t 2 ½4ði� 1Þ � s; ð4i� 1Þs�
� g

2
t 2 ½ð4i� 1Þs; 4i � s�

(
i ¼ 1; 2; 3 � � � ð3Þ

where g is the economic growth rate. We assume that a business cycle consists of 4s
periods. During economic boom, the economy expands at an average growth rate of

g percent for 3s periods. Then a recession kicks in and lasts for 1s period with a

growth rate of �g=2. This kind of seasonal cycle has been discussed in Shapiro and

Watson (1988). Although it is not a rigorous assumption, with this setting up,

macroeconomics factors are able to be incorporated into the model and hence

improves the ability of the model in explain the relationship between business cycle

and stock market cycle.

2.1.2 Chartists

Unlike fundamentalists who make their trading decisions based on fundamental

values, chartists trade mostly based on the past price trend of the risky asset. As a

result, they estimate the short-term fundamental value vt based on historical price

and then extrapolate the next period market price by the deviation of price from its

short-term fundamental value. This deviation is also known as estimation bias.

Accordingly, chartists form their expectation based on the following rule:

Ec
t�1ðptÞ ¼ pt�1 þ bðpt�1 � vt�1Þ ð4Þ

where b 6¼ 0 measures the sensitivity of price expectation to the latest bias which is

denoted by (pt�1 � vt�1). Thus, the demand function of chartists is given by:

Dc
t ¼ g½Ec

t�1ðptÞ � pt�1� ¼ gbðpt�1 � vt�1Þ ð5Þ

where g denotes the elasticity of the demand function of chartists. For simplicity, we

further assume that all chartists share the same belief on the short-term fundamental

value vt. However, due to opinion differences, chartists may choose to follow or

against the price trend. Such differences between chartists are captured by the sign

of b. For those who believe that the market price pt will deviate further away from

1 More details about the chance function can be found in Appendix B.
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pt�1, b ¼ b1 [ 0 and the price trend will persist. They are said to be trend followers

who hold on to positive bias. Accordingly, their excess demand can be expressed as:

Dc
1;t ¼ g1b1ðpt�1 � vt�1Þ ð6Þ

This equation means that when pt�1 [ vt�1, trend followers with b1 [ 0 would

believe that the price trend will continue and hence buy in (Dc
1;t [ 0).

On the contrary, for chartists who believe that the price trend will reverse in the

next period, then b ¼ b2\0. These chartists are known as contrarians as they take

negative bias in making their trading decision. As a result, their excess demand

function is taken as:

Dc
2;t ¼ g2b2ðpt�1 � vt�1Þ ð7Þ

Thus, when pt�1 [ vt�1, contrarians with b2\0 would think that the price trend will

reverse and choose to sell (Dc
2;t\0).

We now look more closely at the short-term assets value, vt. We assume that all

chartists, both trend followers and contrarians, hold on to an identical short-term

assets value. As in Huang et al. (2010) and Huang and Zheng (2012), we assume

that chartists adopt the adaptive belief mechanism where they update their

expectation on short-term assets value. They believe in support and resistance levels

which are derived from common rules of technical analysis2. We assume that

chartists divide price domain P ¼ ½pmin; pmax� into n regimes such that:

P ¼
[n
j¼1

Pj ¼ ½�p0; �p1Þ [ ½�p1; �p2Þ [ � � � [ ½�pn�1; �pn� ð8Þ

where �pj for j ¼ 1; 2; � � � ; n represents the different support and resistance levels

chartists set.

The short-term fundamental asset value can be simply extrapolated as the

average of the top and the bottom threshold prices:

vt ¼ ð�pj�1 þ �pjÞ=2 if pt 2 ½�pj�1; �pjÞ and j ¼ 1; 2 � � � n ð9Þ

When price fluctuates within the current regime, there are enough reasons for

chartists to believe that the short-term fundamental asset value will remain

unchanged. However, once price breaks through either the support line or the

resistance line, chartists will adjust their expectation on the short-term fundamental

asset value according to Eq. (9). This regime switching phenomenon is commonly

found in stock market with chartist’s beliefs evolve with regime switching.

According to Huang et al. (2010), the short-term fundamental value for each period

is estimated as:

vt ¼ ð pt=kb c þ pt=kd eÞ � k
2

if pt 2 ½�pj�1; �pjÞ and j ¼ 1; 2 � � � n ð10Þ

2 Donaldson and Kim (1993) have provided empirical evidence of the existence of support and resistance

levels in Dow Jones Industrial Average.
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2.2 Evolutionary Belief Switch

In our model, we assume that agents can switch their strategy and the switching

between strategies is driven by discounted expected profit which is denoted by p. In

each period, market then updates according to the switching between strategies by

different types of agents. Specifically, the discounted expected profit functions of

fundamentalist and chartists (trend followers and contrarians) are written as:

pc1;t ¼jb1ðpt�1 � vt�1Þ � rpt�1j

pc2;t ¼jb2ðpt�1 � vt�1Þ � rpt�1j

pft ¼sðpt�1Þjðuft � ð1 þ rÞpt�1Þj � C

ð11Þ

where pc1;t, p
c
2;t and pft are expected profit of trend followers, contrarians and fun-

damentalists, respectively. r is the interest rate between period t � 1 and period t. C
is the information cost which fundamentalists have to incur to acquire additional

information. sðptÞ is the discount factor. For chartists, as they are only interested in

one-period returns and capitalize gains or losses immediately, we assume that they

have a discount factor of 1. While fundamentalists value assets according to the cash

flows that the asset is expected to generate. These agents can be thought of as

following a buy-and-hold strategy and they take more time to capitalize their gains

or losses, so the discount factor for them is assumed in the form of

sðptÞ ¼ jðuf ;t � ptÞ=3uf ;tj.
We let xi;t denote market fraction of the three different types of investors. The

fractions of the three groups vary endogenously over time according to choice

model with multinomial logit probabilities introduced by Brock and Hommes

(1998):

xi;tðptÞ ¼
expðqpi;tðptÞÞP
k expðqpk;tðptÞÞ

ð12Þ

where the parameter q is the intensity of choice which measures the speed of

transition between different beliefs. A high value of q means that more investors

will switch between strategies. xi;t is always positive which implies that not all

agents are going for strategy with high discounted expected profit. The belief

updating or switching behavior has been widely discussed in behavioral finance

literature, such as Hirshleifer (2001), Ko and Huang (2012) and Anufriev et al.

(2013).

2.3 Price Determination

Another participant is market marker who mediates transactions in the market to

provide liquidity. The market marker collects orders from all traders, namely trend

followers, contrarians and fundamentalists, then sets the price. The market maker

supplies from his inventory when there is a positive excess demand and do the
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reverse otherwise. In each period, market price3 is updated adaptively according to

the following adjustment rule:

pt ¼ pt�1 þ cðx1;tD
c
1;t þ x2;tD

c
2;t þ x3;tD

f
t Þ ð13Þ

where c is the speed of price adjustment to excess demand.

2.4 Volume Formation

Besides price, volume is another important indicator in stock market. The total

number of all shares transacted in the market is known as trading volume. In our

market maker framework, we assume that chartists with different expectation on

future price trade with each other first, then together they generate either a positive

or a negative excess demand. Compared to chartists, fundamentalists hold totally

different strategy and they may have either a positive or a negative excess demand.

Putting them together, we can foresee two scenarios. First, if fundamentalists and

chartists share the same opinion on the future price trend, then both groups should

trade directly with market marker. Trading volume is the absolute value of

aggregate demand. Second, if fundamentalists and chartists hold different opinion

on the future price trend, they will trade with each other first. Market maker will

only come in to satisfy the remaining excess demand. In this case, trading volume is

the maximum of the absolute value of the excess demand for each group. As a

result, trading volume is defined as:

VðpÞ¼
minðj ~Dc

1;tj;j ~Dc
2;tjÞþj ~Df

tþ ~Dc
1;tþ ~Dc

2;tj if ~Df ;tð ~Dc
1;tþ ~Dc

2;tÞ[0

minðj ~Dc
1;tj;j ~Dc

2;tjÞþmaxðj ~Df
tj;j ~Dc

1;tþ ~Dc
2;tjÞ if ~Df ;tð ~Dc

1;tþ ~Dc
2;tÞ\0

(

ð14Þ

where ~Dc
1;t, ~Dc

2;t and ~Df
t are the weighted excess demand for trend followers,

contrarians and fundamentalists, respectively. ~Dc
1;t¼x1;tD

c
1;t,

~Dc
2;t¼x2;tD

c
2;t and

~Df
t¼x3;tD

f
t .

3 Simulation Results

In this section, we discuss simulation results from the HAM framework with an

additional feature of trading volume that we have elaborated earlier. By putting

together prices, trading volumes and agents’ beliefs, we are able to generate richer

simulation results from the model. We first evaluate the fitness of our model in

capturing the complex dynamics of stock market by exploring the power of the

model in reproducing some of the well-documented stylized facts that were

mentioned in Sect. 1, keeping in mind that no single model can, or should, fit most

aspects of the data but recognize instead that some consistency can still be useful.

Besides the price related stylized facts, we also investigate whether the simulated

3 Logarithmic price could also be used to scale the price.
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dynamics of the model are consistent with the stylized facts on trading volume.

Specifically we look at (1) the correlation between volume and volatility, (2)

Granger causality between volume and returns, (3) information role of volume and

(4) volume and chart patterns. We then examine both price and trading volume

dynamics and see how these variables co-evolve with agents’ beliefs under different

chart patterns and financial crisis.

In order to maintain consistency and unity, we simulate our price and volume series

using a uniform set of parameters throughout the paper unless otherwise specified.

Specifically, we set lf1 ¼ 50, d1 ¼ d2 ¼ �0:3, k ¼ 2, s ¼ 25, k ¼ 13:1787, C ¼ 3,

r ¼ 10�4, g ¼ 0:008, a ¼ 1, b1 ¼ 1:2, b2 ¼ �0:7, g1 ¼ 0:833, g2 ¼ 3:214, q ¼ 0:9
and c ¼ 1. To see how fit the simulated data is in matching the actual financial time

series in terms of its statistical and qualitative properties, we take the daily price and

trading volume of S&P 500 and Dow Jones Index as benchmark. The time range of

these dataset is from 1 January 2010 to 31 December 2016. Stock returns are expressed

in percentage and hence taken as logðpt=pt�1Þ � 100 and percentage change in trading

volume is taken as logðvt=vt�1Þ � 100. As some stylized facts may be sensitive to the

selection of sample period, we also refer to other literature in finance to verify the

explanatory power of our model.

Before we explore the simulated stylized facts, we first look at the simulated

price, returns and volume dynamics of our model in Figure 4. Generally we see that

stock price follows a random walk with returns fluctuate around zero and tend to

cluster. The largest positive and negative returns demonstrate different magnitudes,

implying that there exists asymmetry in stock returns. Trading volume changes with

price and returns and demonstrates occasional spikes which suggest abnormal large

trading volume at times.

The top panel of Fig. 5 displays the simulated prices and market fundamental

value which is computed based on Eq.(3). We classify periods with market prices

Fig. 4 Simulated time series of price (top), returns (middle) and volume (bottom)
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above (below) its fundamental values as bubbles (busts). The remaining panels

show the corresponding fractions of agents in the market with x1, x2 and x3

indicate fraction of trend followers, contrarians and fundamentalists in the market,

respectively. The value of fraction ranges between 0 and 1. When xi;t approaches 1,

agents i are said to dominate the market at time t. When market prices deviate away

from its fundamental values, we see some endogenous self correction where agents

switch between different types of trading strategies.

3.1 Price Dynamic

Our model is a nonlinear model. The nonlinearity in the model is mainly due to the

setup of the chance function Aðlft ; pt�1Þ and the way chartists compute the market’s

short-term fundamental values. The chaotic system developed has the capability of

generating relatively rich price dynamic patterns which are commonly observed in

stock market. For more insights, we show a typical phase diagram of the simulated

prices in Fig. 6. The 45 degree line shows that pt ¼ pt�1. From the figure, chaotic

multi-phase switching of prices is observed. Prices fluctuate across the 45 degree

line several times suggest that there exists multiple equilibria. As introduced by

Huang and Zheng (2012), these price patterns can be classified into a rising zone

and a declining zone. When prices are above the 45 degree line, it would rise in the

next period. Likewise, if the prices are below the 45 degree line, it is expected to

fall. By combining the market conditions and investigating further into two step-

wise dynamics, Huang and Zheng (2012) further classify the declining zones into

sudden, smooth and disturbing declining zones, and discuss the mechanisms and

conditions of how prices continue to stay within the same regime or escape from one

regime to another.

As bifurcation diagrams are frequently used to illustrate the dynamic properties

of a nonlinear system, we also run a number of numerical simulations to illustrate

how the local dynamics of our model vary with some important parameters, such as

Fig. 5 Simulated prices and fundamental values (top) and agents’ fractions (bottom)
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the speed of price adjustment (c), the intensity of choices (q) and other exogenous

parameters which include the sensitivity of fundamentalists when price moves close

to the boundaries of mt and Mt (a), the sensitivity of the price expectation of trend

followers to the bias (b1), the sensitivity of the price expectation of contrarians to

the bias (b2), and information cost of fundamentalists (C). Unless otherwise stated,

in all bifurcation diagrams, bifurcation parameter is increased in 2000 discrete steps

while keeping all other parameters constant.

As discussed earlier, our model has multiple equilibria due to multiple-regimes

setup for chartists. Unlike Huang and Zheng (2012) who look at regime-switching

dynamics, our discussion focuses on within-regime dynamics. In doing so, we set

the short-term fundamental value vt to 50 and growth rate to 0 in our simulations. In

our first analysis, we examine the effect of the speed of price adjustment (c) on the

price dynamics when the intensity of choice, q ¼ 0:85 as in panel (a) and q ¼ 1:85

as in panel (b), respectively. In panel (a) of Fig. 7, we set q to 0.85 and vary c from 0

to 3. We can see that the bifurcation evolves from a stable steady state to a chaotic

price fluctuation when c increases from 0 to 3. The primary bifurcation toward

instability is a period-doubling bifurcation at which the steady state becomes

unstable and a stable 2-cycle emerges. This happens when the value of c is

approaching 1.7. When c continues to increase, further bifurcations occur and the

price dynamics become increasingly more complicated. Likewise, in panel (b) of

Fig. 7, we use q of 1.85 and vary c from 0 to 3 to explore the effect of the intensity

of choice on the price dynamics. We see that with a larger q, the primary bifurcation

occurs at a much lower value of c of around 1. Besides, price fluctuations are more

complicated with higher price adjustment speed, i.e. larger value of c.

Panels (c) and (d) are results from our second analysis where we study the effect

of the intensity of choice (q) on the price dynamics when the speed of price

adjustment is set at 1 and 2, respectively. The bifurcation in panel (c) is very similar

to that of panel (a) which suggests that an increase in the intensity of choice will

trigger a rational route to randomness. In panel (d), we repeat these simulations for

Fig. 6 The phase diagram of price
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c ¼ 2 and find that the primary bifurcation toward instability occurs at low intensity

of choice of 0.7 in panel (d) as compared to 1.6 in panel (c). The price dynamic

shows higher amplitude fluctuation with higher intensity of choice.

More bifurcation diagrams that show how the asymptotic dynamics vary with

other exogenous parameters including the sensitivity of fundamentalists when price

moves close to the boundaries of mt and Mt, the sensitivity of the price expectation

of trend followers to the bias, the sensitivity of the price expectation of contrarians

to the bias, and information cost of fundamentalists are drawn in Appendix D.

Fig. 7 Dynamics of the model. a Bifurcation diagram for speed of price adjustment with q ¼ 0:85. b
Bifurcation diagram for speed of price adjustment with q ¼ 1:85. c Bifurcation diagram for intensity of
choice with c ¼ 1. d Bifurcation diagram for intensity of choice with c ¼ 2
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3.2 Stylized Facts on Price

3.2.1 Unit Root

As been proven in the finance literature, the series of stock prices are not stationary

but returns and volumes are usually stationary. To examine whether our model is

compatible with this stylized fact, we check the unit root of SP&500 Dow Jones

Index data as well as our simulated dataset, and the results are displayed in the

Table 1. The augmented Dickey-Fuller(ADF) are used to test the existence of unit

root. The ADF for three price time series are � 0.661, � 0.675 and � 2.158, which

are significantly greater than the critical value at 10% significant level. The

corresponding p-values imply that all three price statistic are unit root process. In

the return and volume series, the ADF tests significantly reject the null hypothesis of

non-stationary at 1% level for all series. Therefore, we are confident that our

simulation match the actual financial data well in the terms of stationary for price,

return and volume.

3.2.2 Fat Tails

Fat-tailed distributions of financial asset returns are well documented in empirical

studies (see Cont (2001), Chakraborti et al. (2011) and Eom et al. (2019)). The fat

tail of return suggests that extreme returns appear more frequently than what are

predicted by the normal distribution. To investigate the fat tails of the simulated

return, we calculate the skewness and kurtosis values and compare them with that of

actual financial data. Table 2 summarizes the statistic of fat tail tests on our

simulation, S&P 500 and Dow Jones Index. The kurtosis (the fourth moments) for

our simulation is 10.514, which is close to the value for actual financial time series.

The kurtosis for all three series are positive and greater than the benchmark value 3

when returns are normally distributed. It is consistent with finding in literature that

distribution of returns displays a fat tail with positive excess kurtosis. The skewness

(the third moments) of simulated returns is -0.440, which is very close to the

skewness of the well-known indexes. The negative value of skewness implies that

the price falls more than it rises on average.

Table 1 Unit root test

Statistic Price Return Volume

ADF p-value ADF p-value ADF p-value

S&P 500 - 0.661 0.857 - 44.010 0.000 - 18.742 0.000

Dow Jones Index - 0.675 0.853 - 44.037 0.000 - 21.444 0.000

Our simulation - 2.158 0.222 - 37.604 0.000 - 31.645 0.000

Notes: ADF critical value are:� 3.43(1%), � 2.86(5%), � 2.57(10%)
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3.2.3 Volatility Clustering

Another robust statistical property of financial market is the existence of volatility

clustering. The volatility clustering phenomenon refers to significant changes of

prices tend to cluster together, resulting in persistence of the amplitudes of price

changes. Cont (2007) reveals that the different behavior of agents is the reason

causes the volatility clustering. In order to check whether our model is able to

account for this stylized fact, we plot the autocorrelation functions (ACF) for both

artificial data and S&P 500 data.

The returns show almost insignificant autocorrelations for both actual data and

artificial data in Fig. 8. No linear correlation does not mean independence of return.

A different picture emerges when one takes non-linear functions of return into

account, such as absolute or squared returns. As shown in Fig. 8, the ACFs of

simulated absolute returns and squared returns are slowly decaying as time lag

increases. The persistent positive correlation is a quantitative feature of volatility

clustering, meanwhile it also implies a long range dependence that one typically

finds in financial time series. The slowly decaying patterns in the ACFs of artificial

Table 2 Fat tails
Statistic Skewness Kurtosis

S&P 500 - 0.424 7.202

Dow Jones Index - 0.385 6.526

Our simulation - 0.440 10.514

Fig. 8 Autocorrelation functions for raw return, absolute return and squared return
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data are analogous to that for S&P 500 data, which demonstrates that our model

performs quite well in generating the important stylized facts in financial market.

3.2.4 Asymmetric Returns

Asymmetric returns is another stylized fact in financial market. In our simulated

sample, the most positive return is 44% while the most negative return is � 61%,

which matches the documented asymmetry in returns. To test the asymmetry of the

statistic, we run the Shapiro-Wilk test for normality. The null hypothesis for this test

is that return is normally distributed. The result in the Table 3 significantly rejects

the null hypothesis, and the distribution of simulated returns does not follow a

normal distribution. We also do the symmetric plot for the simulated return, and

some points departing from the 45 degree line in Fig. 9 strongly implies that the

returns are asymmetric.

3.2.5 The Power Law of Returns

The tail distribution of returns can be well approximated by the power law, which

has been found and investigated in many literature (Gabaix et al. (2003), He and Li

(2007), Lux and Alfarano (2016), Schmitt and Westerhoff (2017)). In particular, the

distribution of returns is found to decay according to

Pðjrtj[ xÞ�X�a ð15Þ

where a is a constant parameter of the distribution known as scaling parameter or

tail index. To detect the power law distribution of return, we follow the method as in

Clauset et al. (2009), and the method involves maximum-likelihood fitting methods

with goodness-of-fit tests based on the Kolmogorov-Smirnov statistic and likelihood

ratios. As the power law distribution of return is sensitive to the frequency of sample

Fig. 9 Symmetric plot of return
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and time range, we test the daily data (2010/1/1-2016/12/31) and weekly data

(1983w1-2016w52) for both S&P 500 and Dow Jones Index, and find that the

weekly data of these two indexes follow the power law distribution. To investigate

whether our model could generate data with the power law distribution, we test the

simulated data and find that p-value equals to 0.13, which suggests one can not

reject the null hypothesis that data is generated from a power law distribution. The

details of the results are shown in Table 4.

3.3 Volume Dynamics

Before we turn to the stylized facts on volume, we first explore the statistical

properties of our simulated volumes. Figure 10 turns to the statistics of simulated

volumes. The top panel of the diagram characterizes the distribution of simulated

volumes and normally distributed volumes. As can be seen, the distributions of

simulated volumes deviate significantly from normal distribution and possess fat

tails. The bottom panel of Fig. 10 exemplifies the autocorrelation function of

simulated volumes,and the persistence of ACF goes out for a long range and the rate

of decaying is very low, which quantifies the long memory behavior of trading

volumes.

Another statistical feature in financial market is convex or V-shaped relationship

between price and trading volume. As reported by Karpoff (1987), a V-shape has

been found by virtually all empirical investigation of the price-volume relation in

equity market. This V-shape curve has also been widely documented in price-

volume relation studies, such as Gallant et al. (1992), Blume et al. (1994) and Puri

and Philippatos (2008). By building a model for price and trading volume in

financial market, Gallant et al. (1992) found that the dispersion of the information

affects this V-shape relation, but in our model the effect of the disagreement of

investor’s beliefs is perhaps even more interesting. We plot the price-volume

outcomes for simulated data from our model, and we explored the possible effect of

disagreement of belief from two chartists groups (sensitiveness disagreement is

measured by b1 � b2). Figure 11 depicts the resulting price-volume equilibrium

Table 3 Shapiro-Wilk test
Variable Observations W V z Prob[ z

Return 2000 0.929 83.850 11.266 0.000

Table 4 The power law of

return
Statistic Xmin a p-value

S&P 500(weekly) 3.45 3.83 0.77

Dow Jones Index(weekly) 4.07 4.44 0.82

Our simulation 0.10 3.90 0.13

Test hypothesis:

H0 : data is generated from a power law distribution.

H1 : data is not generated from a power law distribution.
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outcomes for three different level of disagreements of chartists. What is most

interesting is that while the greater disagreement of chartists increases the

disagreement of the points (as from panel (a) to (c)), it does not change the

general V-shape of the relation. Indeed, the graph suggests when the disagreement

of the chartists’ belief is small enough, the price-volume relation is characterized by

a simple V-shape. As volume also contains information of investor’s beliefs and

volume statistic provides information to the market that is not conveyed by price,

observing price and volume together is more informative than observing price

alone.

3.4 Stylized Facts on Volume

As mentioned before, most of the HAMs have the ability to generate the stylized

facts on price, but few have investigated the performance of HAM on generating

volume related stylized facts. In this section, we will test our model about the

capability of replicating some stylized facts on trading volume, which have been

mentioned in Sect. 1. While some of them can be detected by statistic approaches,

others will rely on the visualized analysis.

3.4.1 Correlation between Volume and Volatility

As shown in Section 1, there exists a strong positive linear relation between volume

and VIX. Using the same method, we test the correlation between the simulated

trading volume and volatility. Squared returns serve as the proxy of volatility. The

correlation coefficient for the test is 0.337 (Fig. 12), which suggests a weak positive

correlation. Although the correlation between simulated series is not as strong as

that in actual dataset, the significant positive correlation is consistent with the

Fig. 10 Statistics of simulated volume
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Fig. 11 The relation of price and volume for different disagreements of chartists belief. a Disagreements
of chartists belief b1 � b2 ¼ 2. b Disagreements of chartists belief b1 � b2 ¼ 3. c Disagreements of
chartists belief b1 � b2 ¼ 4
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literature. In the past decades, the mechanism of positive correlation between

volume and volatility has been always discussed by many researchers, the

heterogeneous beliefs of agents in our model could provide a reasonable explanation

for this question. As stated in Shalen (1993), the dispersion of beliefs is a factor

contributing to the positive correlation between volume and volatility.

3.4.2 Granger Causality between Return and Volume Change

The linear and nonlinear relations between price and volume have been found in

different markets and countries. To further examine the validity of our model, we

conduct the linear and nonlinear Granger causality tests to investigate whether the

causality relations exist in our simulation. The methods we use to test the linear and

nonlinear Granger causality are the same with those in Sect. 1. The results are

reported in Tables 5 and 6, respectively. In the linear Granger causality test, four

lags for dependent and independent variables are considered in the VAR model. The

Granger tests show strong evidence of unidirectional causality from return to

volume changes. In particular, the Wald statistic value equals 17.829, and suggests

one can confidently reject the null hypothesis of no causality at 1% significant level.

On the other hand, Granger noncausality from volume change to stock return can

not be rejected, as the p-value of the test 0.919 is great enough. Hence,

unidirectional causality from stock return to trading volume exists in our simulation.

To check whether the nonlinear relation exists in the artificial series, we further

conduct the nonlinear Granger causality tests for return and volume change. We

follow the setup for lags and other parameters in Sect. 1, and the results in Table 6

show that all the t-statistics are larger than 1.645 (5% significant level), which

implies there are strong evidence that one can reject the null hypothesis.

Bidirectional nonlinear Granger causality between stock returns and volume

changes is found in our simulation. The linear and nonlinear test results we get from

the simulation are roughly consistent with the results using above S&P 500 and

Fig. 12 Correlation between volume and volatility

123

Price Change and Trading Volume...



Table 5 Linear Granger

causality test
Dependent varibale (1) (2)

Rt Vt

Constant 0.005 1.438***

(0.009) (0.074)

Rt�1 0.237*** 0.183

(0.022) (0.167)

Rt�2 0.065 0.565***

(0.023) (0.172)

Rt�3 - 0.002 - 0.182

(0.023) 0.172

Rt�4 - 0.145*** 0.076

(0.022) (0.168)

Vt�1 - 0.002 0.337***

(0.003) (0.022)

Vt�2 - 0.001 0.045

(0.003) (0.024)

Vt�3 0.002 - 0.050***

(0.003) (0.024)

Vt�4 - 0.001 0.021

(0.003) (0.022)

Wald-stat 0.937 17.829***

p-value 0.919 0.005

Notes: (1) The entries in brackets are the standard errors. The Wald-

stat and p-value are tests of Granger causality. (2)* denotes rejection

at the 10% level, ** rejection at the 5% level, ***rejection at the 1%

level

Table 6 Nonlinear Granger

causality test
Lags H0:Stock Returns Do not

Cause Volume Changes

H0:Volume Changes Do not

Cause Stock Returns

Lx=Ly T-statistic p-value T-statistics p-value

1 1.654 0.049 3.393 0.000

2 1.733 0.042 2.990 0.001

3 1.976 0.024 3.303 0.000

4 2.180 0.015 2.211 0.014

5 2.190 0.014 2.348 0.009

6 1.806 0.035 2.177 0.015

7 1.895 0.029 1.678 0.047

8 1.818 0.034 1.811 0.035

NoteTest critical value for T statistics are 2.326 (1%),1.645 (5%) and

1.282 (10%)
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Dow Jones index dataset. Referring to the literature, the results are exactly

consistent with the findings in Hiemstra and Jones (1994) both in linear and

nonlinear Granger causality tests. The results also justify that our model is capable

of simulating the relationships between returns and volume changes in stock market.

3.4.3 Significant Volume with Large Price Change

There are some visualized stylized facts on trading volume which have drawn much

attention from practitioners and researchers. The first one we intend to simulate is

that significant volume is always associated with price jump. Besides the statistical

relationship we have tested using econometric approaches, the visualized relation-

ship between prices fluctuation and volumes change during abnormal periods is also

an important topic in the stock market. As shown in Sect. 1, the price jumps

suddenly with significant volume during the crisis periods, which reflects a crucial

characteristic of stock market. In our simulation, this kind of relation can be

straightforwardly observed. As illustrated in the Fig. 13, the dramatic changes of

price (either positive or negative) are found with high trading volumes. When the

price suddenly increases or decreases, the volumes almost double the daily average

volume.

3.4.4 Informational Role of Trading Volume

As one of informational tools, trading volume is widely adopted by technicians.

Investors identify specific signal from the volume to confirm the future price trend

and discover the selling and buying opportunities. In efficient market, price

movement is attributed to the available of new piece of information. The previous

example of Google stock demonstrates the the informational role of trading volume

to predict the future price trend. In the Fig. 14, we find similar price and volume

pattern as in the real world. The trading volume of periods before t ¼ 436 is less

Fig. 13 Significant volume with large price change
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than 20, and prices fluctuate in a window from 30 to 100. When the price suddenly

jumps up to the next level at t ¼ 436, the trading volume is almost five times the

daily average, which confirms the breaking-out of price to the resistance line. After

jumping up, prices move above the p ¼ 100. This price level also becomes a new

support line in technical analysis. The price jump with large volume can be

explained by strong institutional buying power or speculative buying power as in

Ülkü and Onishchenko (2019).

3.4.5 Robustness Check of Model’s Fitness

To further investigate model’s capability of generating ‘‘real’’ data, we try another

entropy-related method to measure the statistical similarity between real financial

data and simulated data. Kullback-Leibler Divergence (KL Divergence) is

competent to measure the similarity of different variables. KL divergence has been

popularly used in the data mining literature, and it was originated in probability

theory and information theory. KL divergence is a non-symmetric measure of the

difference between two probability distributions. If two variables are same, the

value of KL divergence is zero. The smaller the value, the shorter the ‘‘distance’’

between two distributions. For more information on KL divergence, one can refer to

Sankaran et al. (2016) and Kim and Sayama (2017). We adopt the method in the

literature to calculate the KL divergence between S&P 500 data and simulated data

for both return and trading volume, and the results are shown in Table 7. As

presented in the table, divergences or distances between simulated data and ‘‘real’’

Fig. 14 Informational role of trading volume

Table 7 Kullback-Leibler

divergence for return and

volume

Return Volume

Simulate-real 0.561 0.132

Real-simulate 0.786 0.160

Mean of two directions 0.674 0.146
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data are small for both return and volume, which provide the evidence of high

similarity between stock market data and model simulated data. It also provides a

new angle to measure the fitness of HAMs.

3.5 Asset Prices in Bubbles and Crises

Bubbles and crises have been the hot topic in financial market studies. As shown in

overall price patterns in Fig. 6, our model can generate essential features of bubbles

and crises, namely, large and growing overvaluation and undervaluation of the risky

asset. Overvaluation (undervaluation) here means that the price exceeds (under) the

fundamental value. To further explore the explanatory power of our model in

bubbles and crises, we check whether large overvaluation and undervaluation hold

for a wide range of parameter values. Figure 15 illustrates this. The four panels (a)–

(d) correspond to four important parameters: adjustment speed of market maker c;

intensity of choice q; sensitiveness of fundamentalist a; and disagreements of

chartists belief b1 � b2. In each panel, the upper diagram plots the maximum

Fig. 15 The peak deviation of prices from fundamental values and corresponding volumes. a Variation of
adjustment speed of market maker c. b Variation of intensity of choice q. c Variation of sensitiveness of
fundamentalist a. d Disagreements of chartists belief b1 � b2
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deviation of the asset price, and the bottom diagram shows the corresponding

trading volumes at the moment of peak deviation. For each panel, we generate

maximum price deviations and volumes by varying the value of the parameter on

the horizontal axis while keeping all other parameter values at the benchmark levels.

The figure confirms that our model generates a large deviation from fundamental

value for a wide range of parameter values. Panel (a) and (c) of the figure indicate

that low values of c and a increase the magnitude of deviation. In other words,

bubbles or crises are more likely to occur with small price adjustment speed of

market maker and low sensitiveness of fundamentalist. In financial markets, when

the trend followers are less active and the fundamentalists are relatively more active,

an increase in c stabilizes the market price to the fundamental price, indicating the

stabilizing role of the market maker. This finding is consistent with argument by

Zhu et al. (2009) that when adjustment speed of market maker is small, he/she may

act as a destabilizing force in the market. In addition, trading volumes keep the same

trend with price deviation in panel (a) but present an opposite trend in panel (c).

With the rise of sensitiveness of fundamentalists, the stabilizing role of fundamen-

talists will be amplified, and prices are more likely to be drew back to fundamental

values, but the trading volume will be scaled up with the increasing demand from

fundamentalists. In panel (b), increase of intensity of choice means that agents are

able to quickly switch their trading strategies. With high clustering to one strategy

of investors in the market, the possibility of bubbles and crises is very large. Most

interestingly, the large disagreement of chartist’s beliefs (b1 � b2) also generates

large bubbles and crises with huge trading volumes.

3.6 Prices, Volumes and Beliefs Co-evolve in Different Chart Patterns
and Crises

Besides simply looking at bubbles and crises, we are also interested in the co-

evolvement of prices, volumes and investor beliefs in financial market. Some

literature of HAM have investigated the co-movement of assets prices and agents

beliefs, such as Boswijk et al. (2007) and Huang et al. (2010). Nevertheless, few of

them have included the trading volumes into the analysis. In this section, we

investigate the stock market from three dimensional viewpoints, and we observe the

co-evolvement of prices, volumes and beliefs in our simulation. Furthermore, we

introduce the chart patterns and crises into our analysis. As expected, our model has

the ability to provide the reasonable explanation for the formation of different

chart patterns and crises patterns.

Chart pattern is one of the most popular strategies for technicians, and they have

summarized many patterns in the price series. Although not all of them appear

during a specific period, some patterns such as double tops, double bottoms, head-

and-shoulders and V tops are found in stock market frequently. We select some

chart patterns from our simulation, and the co-evolvement of prices, volumes and

beliefs within these pattern periods are displayed in Figs. 16 and 17. A double tops

pattern is shown in the top of Fig. 16. At the first stage of the pattern, the

fundamentalists are in charge of the market as the price is lower than their

fundamental value. The great excess demand of fundamentalists pushes up the price,
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and when the price hikes gradually to the first top, the trend followers dominate the

market. The gradual bubble occurs with large trading volume. At the next stage,

when the price reaches a high level, the fraction of contrarians increases. It follows

that price falls with more chartists chasing the falling trend. At the bottom, the price

is lower than the fundamental value, and the fundamentalists take over the market

again. Huge demand of fundamentalists leads to large trading volume, and the price

rises again with the increasing number of chartist. Finally, the second top appears.

Double bottoms pattern is reversal pattern of double tops. As shown in Fig. 17, the

bottoms are formed with a sudden or smooth falling of price, and trading volume is

also significant at the same time. The fundamentalists dominate the market at

bottoms’ period, and chartists take over during other periods.

Fig. 16 Prices, volumes and beliefs co-evolve in double tops pattern

Fig. 17 Prices, volumes and beliefs co-evolve in double bottoms pattern

123

Price Change and Trading Volume...



HAMs have been widely used to explain the financial crises in many ways.

Huang et al. (2010) have found that switches between trading strategies lead to price

dynamic and cause different types of financial crises, such as sudden crisis, smooth

crisis and disturbing crisis. We examine the smooth crisis and sudden crisis in our

simulation, and the co-evolvement of prices, volumes and beliefs during crisis

periods are demonstrated in Figs. 18 and 19. In the smooth crisis, the price falls

smoothly from 300 to 100, and trading volume also decreases accordingly. When

the price declines to a low level, fundamentalists replace the chartists to dominate

the market. The lasting descending trading volume could be regarded as signal of

smooth crisis. During smooth crisis, chartists dominate the market and induce the

slow decline of price. The existence of contrarians slow down the speed of price

Fig. 18 Prices, volumes and beliefs co-evolve in a smooth crisis

Fig. 19 Prices, volumes and beliefs co-evolve in a sudden crisis
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falling. Once price falls below the fundamental value, fundamentalists begin to

increase and take over the market. In a sudden crisis, the price plunges from the

peak precipitately to the bottom, and trading volume surges at the same time. In the

Fig. 19, the sudden crisis occurs with the spike shape volumes, and the number of

fundamentalists suddenly increases and fundamentalists become the majority in the

market.

4 Conclusion

In this paper, we develop a HAM with trading volume to replicate qualitative and

quantitative features commonly observed in the stock market. Under the framework

of market maker, fundamentalists and chartists hold heterogeneous beliefs on future

price of risky assets. Agents are allowed to update their expected price based on

different behaviors: the fundamentalists set their fundamental value referring to the

costly internal information and economy growth rate, while chartists update their

expected short-term fundamental value according to a series of psychological

windows. To fit the real life case well, we introduce the adaptive evolutionary

regime and agents freely switch to other group and choose the strategies that would

optimize their discounted expected profit. The interaction between the fundamen-

talists and chartists could generate the price fluctuation and price-volume

relationship. Meanwhile, the adaptive switching behavior of agents also increases

market fluctuations both in price and volume. We are able to explore the rich

dynamics of price and trading volume by building such a simple model, such as

price bifurcations, V-shape price volume relation and features of bubbles and crises

with variation of parameters.

Although we keep our model as simple as possible, it is also capable of

generating a wide range of stylized facts both on price and volume simultaneously.

As documented in literature, many HAMs are capable of generating stylized facts

on price or return, such as unit root process in prices, fat tails, asymmetric and

volatility clustering returns. The HAM in Huang and Zheng (2012) even has the

ability to simulate the strict power-law distribution of return. After successfully

simulating all the ‘‘standard’’ stylized facts above, we further explore the potential

of our model in generating the stylized facts on volume. The deterministic model

performs well in reproducing the stylized facts like stationary volume, positive

correlation between volume and volatility, Granger causality between return and

volume change. In addition, our model also closely mimics some visualized stylized

facts which are commonly found in financial market, such as significant volume

with dramatic price change and information role of trading volume. To demonstrate

the power of our model in explaining different patterns in stock market, we identify

different chart patterns and crises pattern that are frequently documented in

technical analysis and literature, then analyze the formation of these patterns. We

are the first who use tridimensional analysis approach to investigate the co-

evolvement of prices, volumes and beliefs in these patterns. The co-evolvement of

these three elements comprehensively reflects the trading activities and the

investors’ behavior in financial market, which could give us a thorough view on
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financial market. By analyzing the chart patterns, our model could also provide

theoretical underpinning for technical analysis.

Further exploration can be made as well. In the strategy of each group, none of

them take the trading volume into their consideration. So the self-fulfilling power of

volume signals could be test in the future study. In addition, the profitability of

different trading strategies has been documented in many empirical literature, and

we are interested to explore this feature by HAM in future research.

Appendix A

Linear Granger causality definition: Two stationary time series Xt and Yt, let

FðXtjXt�1Þ be the conditional probability distribution of xt given the bivariate

information set Xt�1 consisting of an LX-length lagged vector of Xt and Ly-length

lagged vector of Yt. If:

FðXtjXt�1Þ ¼ FðXtjðXt�1 � YlyÞÞ; t ¼ 1; 2; � � � ðA:1Þ

Given lags Lx and Ly, the time series Yt does not strictly Granger causality cause Xt.

If the equality does not hold, Y is said to strictly Granger cause X. In plain words, Xt

is said to Granger-cause Yt if X cannot help predict future Y.

To test for Granger causality between stock return and volume change, we

conduct the following vector autoregressive (VAR) model:

Rt ¼ Aþ BðLÞRt þ CðLÞVt þ Ut ðA:2Þ

Vt ¼ Dþ EðLÞRt þ FðLÞVt þ Vt ðA:3Þ

Where, Rt is stock return and Vt is percentage change of volume. B(L), C(L),E(L)

and F(L) are lag polynomials of Rt and Vt.

Nonlinear Granger causality definition: Consider two strictly stationary and

weakly dependent time series Xt, Yt t ¼ 1; 2; 3 � � �, We then denote the m-length lead

vector of Xt by Xm
t and the Lx-length and Ly-length lag vectors of Xt and

Yt,respectively, by XLx
t�Lx and YLy

t�Ly.For given values of m, Lx, and Ly� 1 and for

e� 0, Y does not strictly Granger-cause X if

Prðk Xm
t � Xm

s k � e

���� k XLx
t�Lx � XLx

s�Lx k � e; k YLy
t�Ly � YLy

s�Ly k � eÞ

¼ Prðk Xm
t � Xm

s k � e

���� k XLx
t�Lx � XLx

s�Lx k � eÞ
ðA:4Þ

where Prð�Þ denotes probability and k � k denotes the maximum norm. In order to

transform equation (A.4) into a testable form, we denote the joint and marginal

probabilities by:
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C1ðmþ Lx; Ly; eÞ 	 PrðXmþLx
t�Lx � XmþLx

s�Lx k � e; k YLy
t�Ly � YLy

s�Ly k � eÞ
C2ðLx; Ly; eÞ 	 PrðXLx

t�Lx � XLx
s�Lx k � e; k YLy

t�Ly � YLy
s�Ly k � eÞ

C3ðmþ Lx; eÞ 	 PrðXmþLx
t�Lx � XmþLx

s�Lx k � eÞ
C4ðLx; eÞ 	 PrðXLx

t�Lx � XLx
s�Lx k � eÞ

The strict Granger noncausality condition in equation (4) can be expressed as

C1ðmþ Lx; Ly; eÞ
C2ðLx; Ly; eÞ ¼ C3ðmþ Lx; eÞ

C4ðLx; eÞ ðA:5Þ

The null hypothesis for Yt strictly Granger-causing Xt in Eq. (A5) is

Table 8 Linear Granger causality test

Dependent

variable

S&P 500 Dow Jones Index

(1) (2) (3) (4)

Rt Vt Rt Vt

Constant -0.660 5.321*** -1.301 3.168***

(2.664) (0.478) (1.143) (0.361)

Rt�1 -0.047* -0.011*** -0.048** -0.026***

(0.024) (0.004) (0.024) (0.008)

Rt�2 0.020 -0.003 0.031 -0.016**

(0.024) (0.004) (0.024) (0.008)

Rt�3 -0.066*** -0.002 -0.042* -0.006

(0.024) 0.004 (0.024) (0.008)

Rt�4 -0.005 -0.010 -0.015 -0.004

(0.024) (0.004) (0.024) (0.008)

Vt�1 -0.104 0.471*** -0.011 0.378***

(0.133) (0.024) (0.075) (0.024)

Vt�2 0.252* 0.456*** 0.134* 0.188***

(0.147) (0.026) (0.080) (0.025)

Vt�3 -0.247* 0.051* -0.084 0.152***

(0.147) (0.026) (0.081) (0.025)

Vt�4 0.131 0.079*** 0.032 0.113***

(0.133) (0.024) (0.076) (0.024)

Wald-stat 7.923 11.340*** 4.218 15.678***

p-value 0.295 0.023 0.377 0.003

Notes: (1) The entries in brackets are the standard errors. The Wald-stat and p-value are tests of Granger

causality. (2)* denotes rejection at the 10% level,** rejection at the 5% level, ***rejection at the 1% level
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ffiffiffi
n

p C1ðmþ Lx; Ly; e; nÞ
C2ðLx; Ly; e; nÞ � C3ðmþ Lx; e; nÞ

C4ðLx; e; nÞ

� �
�Nð0; r2ðm; Lx; Ly; eÞÞ

ðA:6Þ

After getting two estimated residual series Ut and Vt from the linear VAR esti-

mation, we use the modified HJ test(see Diks and Panchenko (2006)) to investigate

the nonlinear Granger causality between stock return and trading volume. The

results of linear and nonlinear Granger causality tests are shown in Tables 8 and 9,

respectively.

Appendix B

The chance function shows the chance of lost opportunity either to buy when the

assets price is low or fail to sell when the price is high. It can be expressed as

Aðlft ; ptÞ ¼ aðpt � mðlft ÞÞ
dðMðlft Þ � ptÞd ðB:1Þ

where a and d are the parameters that describe the sensitiveness of fundamentalists

Table 9 Nonlinear Granger causality test

Lags H0:Stock Returns Do not Cause

Volume Changes

H0:Volume Changes Do not Cause

Stock Returns

Lx=Ly T-statistic p-value T-statistics p-value

S&P 500

1 3.027 0.001 1.059 0.145

2 2.237 0.013 0.960 0.169

3 1.975 0.024 0.403 0.343

4 2.076 0.019 1.241 0.101

5 1.175 0.120 1.115 0.132

6 0.748 0.227 1.372 0.085

7 0.966 0.167 1.924 0.027

8 0.566 0.286 1.575 0.058

Dow Jones Index

1 1.026 0.153 -0.613 0.730

2 0.874 0.191 -0.575 0.717

3 0.128 0.449 0.248 0.402

4 0.249 0.401 -0.041 0.516

5 0.609 0.271 -0.086 0.534

6 -0.436 0.668 0.118 0.453

7 -0.422 0.663 0.239 0.405

8 -0.222 0.588 0.872 0.192

Note:Test critical value for T statistics are 2.326 (1%),1.645 (5%) and 1.282 (10%)
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when the price move close to the boundaries and a[ 0, d\0. Assuming lft as

constant, the chance function can be simply illustrated as Fig. 20.

We define the boundaries as below

Mt ¼ klft and mt ¼
1

k
lft ðB:2Þ

As defined in Black (1986), price fluctuates within a reasonable bond in efficient

market. k[ 1 is a pre-selected factor and lft is the fundamental value of risky assets.

Fig. 20 The chance function

Fig. 21 Correlation between volume and the VIX
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Appendix C

See Fig. 21

Scatter plotting of S&P 500 trading volume and VIX between 1/1/2010 and

12/31/2016.

Appendix D

In Fig. 22a, the sensitivity of fundamentalists when price moves close to the

boundaries (a) is used as a bifurcation parameter, the price dynamics are stable for

a� 1:3. However, when a goes beyond this value, the equilibrium begins to lose its

stability with a stable period-2 cycle. When a increases further, chaos takes place

through a cascade of infinite sequence of period-doubling bifurcation. When

Fig. 22 Dynamics of the model. a Bifurcation diagram for sensitiveness of fundamentalist. b Bifurcation
diagram for sensitiveness of trend follower. c Bifurcation diagram for sensitiveness of contrarian.
d Bifurcation diagram for information cost of fundamentalist
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a approaches 4.8, the price dynamics become stable again and a reversed flip

bifurcation is observed.

Figure 22b shows a similar periodic bifurcation when the sensitivity of the price

expectation of trend followers to past estimation bias (b1) is used. The price

dynamics are stable when the value of b1 is small and cascade of flip bifurcation

occurs before it leads to chaotic motion. The dynamics will eventually stabilize

when b2 goes beyond 16. Figure 22c is the bifurcation diagram when the sensitivity

of the price expectation of contrarians to past estimation bias (b2) is used as the

parameter of the analysis. As b2 holds on to a negative value, b2 decreases from 0

means that the sensitivity of contrarians to past estimation bias increases. Again we

see that when contrarians are more sensitive to past estimation bias, i.e. b2 is more

negative, a period-2 cycle first emerges followed by a period-4 cycle before it

generates chaos.

Information cost may affect the model dynamics through the expected profit

function of fundamentalist. As shown in panel (d), if information cost C is small

then there exists a stable period-2 cycle. If C increases, this cycle becomes

unstable and flip bifurcations occur. After infinitely many flip bifurcations the price

behaviour becomes chaotic, as C increases. When C further increases after a cascade

of period halving bifurcations there exists stable stationary equilibrium.
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