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Abstract 

 

Using firm-level trading and accounting signals, we construct 454 univariate strategies in the 

Chinese stock market over the past 20 years. With the conventional single-testing t-statistic cutoff 

of 1.96, 104 and 22 strategies have significant value-weighted raw returns and alphas, respectively. 

To avoid false discoveries, we calibrate the multiple-testing t-statistic cutoff to 2.85. The raw 

returns of 38 strategies survive the higher hurdle rate, while none remain significant after risk 

adjustments. Composite strategies with multiple signals and machine learning techniques perform 

much better than univariate strategies. Interestingly, these anomaly returns comove significantly 

with market development, accounting quality, liquidity, and regulations. 
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1. Introduction 

After 30 years of rapid growth, the Chinese stock market is currently the second-largest stock 

market in the world, with 4,873 stocks listed and a total market capitalization of 11.7 trillion dollars 

by the end of August 2022. Meanwhile, its correlation with the rest of global markets stays 

relatively low, which makes it a natural choice for international diversification. Due to its 

enormous size, fast growth, and diversification benefits, the Chinese stock market has attracted 

considerable attention from investors, regulators, and academia from all over the world, all trying 

to understand the opportunities and risks therein. Unlike more advanced stock markets, the Chinese 

stock market has certain unique features, such as a large number of retail investors and an opaque 

information environment, which make it interesting yet challenging to understand the return 

dynamics of Chinese stocks. 

Anomalies are important channels for understanding the cross-section of stock returns. 

Classic asset pricing theories state that returns are compensations for risks, and many asset pricing 

models have been proposed to explain cross-sectional return patterns, such as the CAPM of Sharpe 

(1964), the three- and five-factor models of Fama and French (1993, 2015), and the q-factor models 

of Hou, Xue, and Zhang (2015) and Hou, Mo, Xue, and Zhang (2021). Under the joint hypothesis 

of market efficiency and risk adjustments using the correct model, all assets or managed portfolios 

should not have significant abnormal returns. Hence, the unexplained return patterns are typically 

called “anomalies.” Recent studies on U.S. anomalies, such as McLean and Pontiff (2016), Green, 

Hand, and Zhang (2017), and Hou, Xue, and Zhang (2020), have substantially influenced our 

understanding of return dynamics, market efficiency, and compensation for risks. 

In this study, we aim to understand the cross-sectional return patterns in the Chinese stock 

market through the lens of anomalies. In contrast to existing studies, which mostly focus on a small 
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number of anomalies, we collect 208 signals to construct 454 strategies for the Chinese market, 

which makes our study the most comprehensive one on Chinese anomalies. One might expect the 

anomaly patterns in China to be similar to those in the U.S. However, previous research, such as 

Titman, Wei, and Xie (2013) and Jacobs and Muller (2020), shows that anomaly patterns in the 

U.S. cannot be easily replicated in other markets. Given the distinctive features of the Chinese and 

U.S. markets, the anomaly patterns in China could be substantially different from those in the U.S., 

which would shed light on the sources of anomalies and provide insights on market efficiency as 

well as asset pricing models. 

Among the 208 firm-level signals we collect, 73 are based on trading data, such as price, 

volume, and volatility, and 135 are based on accounting data, such as value, profitability, and 

investment. To examine whether they contain information about the cross-section of Chinese stock 

returns, we first construct univariate strategies to examine the signals individually. For each signal, 

we sort the largest 70% of Chinese stocks (excluding microcaps) into ten groups and long stocks 

in the top decile with the highest signal values and short stocks in the bottom decile with the lowest 

signal values. With different portfolio holding periods, we construct a total of 454 univariate 

strategies, and compute value- and equal-weighted high-minus-low raw and risk-adjusted returns 

for each of these strategies. If the high-minus-low raw or risk-adjusted return (alpha) on a strategy 

is significantly different from zero, then it is deemed a significant anomaly. The significant 

anomalies can be used for investment purposes; they can also provide information on cross-

sectional return patterns, inferences on market efficiency, and the adequacy of asset pricing models. 

To establish statistical significance, we start with the conventional single-testing t-statistic 

cutoff of 1.96 at the 5% significance level. For the value-weighted high-minus-low strategies, 104 

out of 454 have significant raw returns. Among them, 38 are based on trading signals and liquidity 
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measures in particular, and the other 66 are based on accounting signals, especially profitability 

measures. For the equal-weighted strategies, 189 out of 454 have significant raw returns, with 95 

strategies based on trading signals and 94 based on accounting signals. Liquidity and profitability 

measures are again the biggest contributors. These results suggest that liquidity and profitability 

are important drivers of cross-sectional returns in China. 

The significant high-minus-low raw returns may be compensation for exposures to systematic 

risk factors in China. Therefore, we compute risk-adjusted returns or alphas, using the CAPM and 

the Chinese three- and four-factor models (CH3 and CH4) of Liu, Stambaugh, and Yuan (2019). 

The CAPM considers only the market factor; the CH3 model incorporates the market, size, and 

value factors in China; and the CH4 model further adds a liquidity risk factor. While the CAPM 

cannot explain most of the significant high-minus-low raw returns, the CH3 and CH4 models can. 

For example, out of the 104 significant value-weighted strategies, 103 have significant CAPM 

alphas; 37 have significant CH3 alphas; and only 22 have significant CH4 alphas. 

In assessing the evidence of significance in the factor pricing and anomaly literature, recent 

studies, such as Harvey, Liu, and Zhu (2016), Chordia, Goyal, and Saretto (2020), Hou, Xue, and 

Zhang (2020), Chen (2021), and Giglio, Liao, and Xiu (2021), highlight the possibility of false 

discoveries and offer various solutions. In this paper, we adopt the methodology of Harvey and 

Liu (2020) and use their multiple-testing framework and double bootstrapping to recalibrate the t-

statistic cutoff to 2.85. The higher hurdle rate for t-statistics greatly reduces the number of 

significant anomalies in China. For the value-weighted strategies, only 38 remain significant in 

raw returns. After CH3 and CH4 risk adjustments, the number drops to four and zero, respectively. 

For the equal-weighted strategies, 108 remain significant in raw returns, 37 in CH3 alphas, and 21 

in CH4 alphas. 
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To obtain economic intuitions on our results, we compare the anomaly patterns in China to 

those in the U.S., in terms of significance rate and information content. For the former, Hou, Xue, 

and Zhang (2020) document a significance rate of 35% in the U.S. for value-weighted raw returns 

under single testing and 18% under multiple testing. Our results show a significance rate of 23% 

in China for value-weighted raw returns under single testing and 8% under multiple testing. The 

patterns are similar for equal-weighted returns. Therefore, the significance rate in China is 

considerably lower than that in the U.S. In our view, the short time series combined with the high 

level of uncertainty and opaque information environment are responsible for the smaller number 

of significant anomalies in China. 

What is perhaps more interesting is the information content of the anomalies. Our results 

show that trading signals contribute more to the significant anomalies in China than in the U.S., 

while the opposite is true for accounting signals. The relative importance of trading signals in 

China is likely driven by the fact that the Chinese stock market is still a young and under-developed 

market, with more than half of the daily trading volume coming from retail investors, whose 

excessive trading generates predictable return patterns that are picked up by trading signals. At the 

same time, due to the relatively lax financial reporting standards and disclosure practices and the 

generally opaque information environment, many accounting signals in China are too noisy to 

significantly predict returns during our sample period. 

To further improve our understanding of the anomaly patterns in China, we study two 

additional important questions. First, do aggregate economic conditions affect anomaly returns in 

China? To answer this question, we relate anomaly returns to aggregate market-level variables, 

including trading frictions, financial market development, accounting data quality, investor 

sentiment, market liquidity, and government regulations. We find that anomaly returns comove 
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significantly with financial market development, accounting quality, market liquidity, and 

government regulations. In particular, we find that periods of higher market liquidity are associated 

with larger anomaly returns, which is consistent with the retail trading interpretation. 

Second, given the short history, noisy signals, and volatile returns of the Chinese stock market, 

can investors enhance the performance of their trading strategies by combining multiple signals 

into composite strategies? To answer this question, we consider both traditional signal aggregation 

methods, such as composite score and multiple regression, as well as advanced machine learning 

methods, such as Lasso and random forest. The composite strategies, especially those based on 

machine learning methods, deliver higher raw returns and alphas than univariate strategies, 

indicating that investors can potentially improve the profitability of their trading strategies by 

combining firm-level signals. 

Our study is related to three different strands of the anomaly literature. First, it is related to 

the literature on U.S. anomalies. Recent studies, such as McLean and Pontiff (2016), Green, Hand, 

and Zhang (2017), Linnainmaa and Roberts (2018), Hou, Xue, and Zhang (2020), and Chen and 

Zimmermann (2022), document hundreds of firm-level characteristics that can predict the cross-

section of stock returns; Jensen, Kelly, and Pedersen (2023) develop Bayesian anomaly replication 

models to show that anomalies work in the U.S. and global markets; Harvey, Liu, and Zhu (2016), 

Chordia, Goyal, and Saretto (2020), Harvey and Liu (2020), Chen (2021), and Giglio, Liao, and 

Xiu (2021) focus on the testing procedures for the significance of anomalies; and Gu, Kelly, and 

Xiu (2020) adopt machine learning techniques to combine anomaly signals. Second, our study of 

anomalies in China is related to previous papers on anomalies in international markets. For 

example, Ang, Hodrick, Xing, and Zhang (2009) examine the idiosyncratic volatility anomaly in 

23 developed markets; Hou, Karolyi, and Kho (2011) investigate the size, dividend yield, earnings 
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yield, cash flow-to-price, book-to-market equity, leverage, and momentum effects in 49 developed 

and emerging markets; Titman, Wei, and Xie (2013) and Watanabe, Xu, Yao, and Yu (2013) study 

the investment anomaly in more than 40 countries; Jacobs and Muller (2020) study 241 anomalies 

in 39 international markets. Some of these papers find that certain anomalies in the U.S. may not 

replicate in other markets, while others show that anomalies tend to be stronger in more developed 

markets. Finally, our work naturally connects to previous studies on Chinese anomalies, such as 

Chen, Kim, Yao, and Yu (2010), Hsu, Viswanathan, Wang, and Wool (2018), Jansen, Swinkels, 

and Zhou (2021), Wu, Wei, and Zhang (2021), Leippold, Wang, and Zhou (2022), and Li, Liu, Liu, 

and Wei (2023).  

In comparison with previous research on international and Chinese anomalies, our study 

contributes to the literature in four different ways. First, we provide the most comprehensive study 

to date on Chinese stock market anomalies and obtain substantial new findings to improve our 

understanding of cross-sectional return patterns in China. Second, to address the concern of false 

discoveries, we calibrate the multiple-testing threshold for the Chinese market, which could be 

useful for future studies on anomalies in China. Third, we document significant differences in 

anomaly patterns between China and the U.S. to complement the international anomaly literature. 

In particular, we show that many trading-based signals, especially those related to liquidity, are 

significant in China. Finally, we link anomaly returns to aggregate market conditions and find that 

financial market development and accounting quality significantly attenuate anomaly performance, 

while market liquidity and government regulations significantly accentuate anomaly performance. 

In particular, three studies—Liu, Stambaugh, and Yuan (2019), Leippold, Wang, and Zhou 

(2022), and Li, Liu, Liu, and Wei (2023)—investigate cross-sectional returns in the context of 

China and are closely related to our paper. However, our research perspectives are different. For 
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instance, Liu, Stambaugh, and Yuan (2019) propose risk adjustment benchmark factor models. 

Leippold, Wang, and Zhou (2022) use machine learning methods to construct composite strategies 

with multiple signals. In contrast, we analyze cross-sectional return patterns through a 

comprehensive set of individual anomalies, covering both single and multiple testing, information 

content, and sources of anomalies. Li, Liu, Liu, and Wei (2023) compare the performance of 

various factor models based on replicated anomalies following Hou, Xue, and Zhang (2020). 

Conversely, we construct comprehensive anomalies and aim to address three important issues in 

the anomaly literature: false discoveries, economic insights, and driving forces. Therefore, based 

on different research perspectives, our study provides interesting new findings that differ from 

those in the three aforementioned papers. 

The remainder of this paper is organized as follows. Sections 2 and 3 introduce the data and 

methodology used in this paper, respectively. We study univariate strategies and relate them to 

aggregate market conditions in Section 4, and examine composite strategies in Section 5. Section 

6 presents robustness results with respect to microcaps, and Section 7 concludes. 

2. Data 

2.1 Data Sources 

The Chinese stock market data are available from 1990 onwards, and our sample period is 

from July 2000 to December 2020. We start our analysis from 2000 for three reasons. First, to 

construct anomaly strategies, we need a large cross-section of stocks, but the sample size before 

2000 cannot ensure a sufficient number of stocks for portfolio construction. Second, many 

regulations on financial reporting were implemented around 2000 in China, and accounting data 

became more comparable across firms afterwards. Third, several trading rules, such as the daily 

price limits, which greatly reduced noise and extreme movements in stock prices, also became 
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effective around 2000. 

We obtain daily stock trading data and quarterly accounting data from WIND Information 

Inc., institutional ownership data from CSMAR, and analyst earnings forecast data from 

SUNTIME. We also obtain social media coverage from GUBA, web search index from WSVI, 

and news data from CFND via the Chinese Research Data Services (CNRDS) platform. The WIND 

and CSMAR data are available starting from 2000. Other datasets start at later times, with 

SUNTIME starting from 2006, GUBA from 2008, WSVI from 2011, and CFND from 2001. 

We merge the above datasets using unique stock identification codes. Following previous 

studies, we apply several filters to our sample. First, we drop the first six months of data after a 

firm goes public to avoid potentially extreme volatility and illiquidity following the IPO. Second, 

to guarantee minimum stock liquidity and data quality and to filter out firms with long trading 

suspensions, we exclude firms with less than 75% of daily trading records within a signal 

construction window. Third, to avoid the shell contamination effect documented in Liu, Stambaugh, 

and Yuan (2019), we drop the smallest 30% of firms based on market capitalization. Lastly, due to 

their different trading rules, we exclude firms listed on the Science and Technology Innovation 

Board. More details on the data are presented in Internet Appendix A. 

2.2 Signals 

We construct 199 signals following Hou, Xue, and Zhang (2020), one of the most 

comprehensive studies on anomalies. In addition, we construct nine signals that are specific to the 

Chinese stock market, including a state ownership (SOE) indicator, a margin trading indicator, and 

signals based on social media comments, coverage, and web search volume. Altogether, we have 

a total of 208 signals. Based on the information content of the signals, we separate them into two 

broad groups: 73 trading-based signals and 135 accounting-based signals. The trading signals are 
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further divided into three subgroups: 35 liquidity measures, such as volume and turnover; 18 risk 

proxies, such as beta and volatility; and 20 past return signals, including momentum, reversal, and 

seasonality. The accounting signals are also divided into four subgroups: 35 profitability measures, 

such as return on equity and return on assets; 24 value proxies, including book-to-market ratio and 

earnings-to-price ratio; 37 investment measures, such as asset growth; and 39 other fundamental 

variables, including R&D expense ratio and analyst forecast dispersion. We list the 208 signals in 

Table 1 and provide their detailed definitions in Internet Appendix B. Given that Chinese trading 

rules and accounting standards are sometimes different from those in the U.S., we make 

adjustments to signal construction when necessary. 

[Insert Table 1 Here] 

2.3 Summary Statistics 

To have a basic idea of the overall features of the Chinese stock market, we provide summary 

statistics of the Chinese market in comparison to the U.S. over the sample period 2000 – 2020 in 

Table 2. In the first two rows, we report the time-series averages of the number of listed firms and 

total market capitalization for China and the U.S. Over the past 20 years, on average there are more 

than 2,000 listed firms in China, whereas there are more than 4,000 listed firms in the U.S. The 

average aggregate market cap is 3.81 trillion dollars for China, compared to 18.54 trillion dollars 

for the U.S. The next four rows of Table 2 report the average pooled firm-level statistics for each 

market. The average firm size is 1.81 billion dollars in China, less than half of the U.S. average 

firm size of 4.32 billion dollars. The average book-to-market ratio in China is 0.40, which is lower 

than that of 0.84 in the U.S., indicating higher market valuations in China. We compute share 

turnover in China as the total number of shares traded in a year divided by the number of free-float 

A-shares outstanding at the prior year-end. The average annual share turnover in China is 6.53, 
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which almost triples the average U.S. share turnover of 2.38, suggesting that Chinese firms are 

much more liquid than U.S. firms. In the last row, the average annual return for Chinese firms is 

18% with a volatility of 0.70, compared to the average U.S. firm annual return of 12% and 

volatility of 0.66. Overall, Chinese firms have smaller size, higher valuations, and higher liquidity. 

[Insert Table 2 Here] 

We also present the time series of several important market characteristics in Figure 1. Panels 

A and B plot the number of listed firms and total market cap over time, respectively. The number 

of Chinese listed firms rose from 973 in 2000 to 3,736 in 2020, and the total market cap rose from 

0.2 trillion dollars in 2000 to 11 trillion dollars in 2020. By comparison, over the same period, the 

number of listed firms in the U.S. decreased from 6,358 in 2000 to 3,744 in 2020, while the total 

market cap grew from 14 trillion dollars in 2000 to 39 trillion dollars in 2020. 

[Insert Figure 1 Here] 

As mentioned in the introduction, the Chinese stock market differs from the U.S. market in 

two major aspects: trading and information environment. Panel C of Figure 1 plots the average 

firm-level share turnover by year. Over the 20 years in our sample, the average share turnover is 

always higher in China than in the U.S. We also observe substantial time-series variation in 

turnover for Chinese firms. It exhibits large spikes in 2007, 2009, and 2015, likely driven by 

excessive trading during market boom and bust periods. In terms of information environment, 

Boone and White (2015) use institutional ownership as a proxy for information quality, arguing 

that institutional investors are more sophisticated, and their participation improves the information 

environment of a firm. We compute firm-level institutional ownership in China as the shares held 

by mutual funds, brokers, insurance companies, security funds, entrusts, etc. divided by the number 

of free-float A-shares outstanding. We plot the average firm-level institutional ownership in Panel 
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D of Figure 1. The average institutional ownership in China varies between 3% and 22% over our 

sample period, which is much lower than the 33–65% range for the U.S. over the same period, 

suggesting that information quality is worse in China than in the U.S. 

3. Methodologies 

3.1 Univariate Strategies 

The univariate strategies are each based on one firm-level signal. They are constructed 

following the [k, m, n] timing convention, with k, m, and n referring to the length of the signal 

estimation period, waiting period, and holding period, respectively. At the beginning of each month 

t, we first collect firm-level information over months [t-k-m, t-m-1] to construct a signal. Then we 

sort the largest 70% of A-share stocks into decile portfolios based on their signal values. Decile 1 

contains the 10% of stocks with the lowest signal values, and decile 10 contains the 10% of stocks 

with the highest signal values. We hold these decile portfolios for n months over months [t, t+n-1] 

and compute their value-weighted and equal-weighted raw returns over the holding period. If n is 

greater than one, for a given decile each month there exist n sub-deciles, each of which is based 

on a signal estimation window ending in each of the n-month period prior to month t-m. We take 

the simple average of the sub-decile returns as the return of the decile.1 Altogether, we construct 

454 univariate strategies. If a signal contains valuable information about the cross-section of stock 

returns in China, we expect to see a significant average high-minus-low return (the return 

difference between decile 10 and decile 1). 

3.2 Risk Adjustments 

To compute risk-adjusted returns, the first benchmark model we consider is the Chinese 

CAPM with a local market factor. We follow Liu, Stambaugh, and Yuan (2019) and construct the 

 
1 Details on portfolio construction (including exceptions to the above method) are provided in Internet Appendix B. 
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Chinese market factor as the difference between the return on the value-weighted portfolio of the 

largest 70% of A-share stocks and the one-year deposit rate (a proxy for the risk-free rate in China). 

For a strategy l, we estimate its CAPM alpha, 𝛼𝑙
𝐶𝐴𝑃𝑀, as: 

𝑅𝑙,𝑡
ℎ𝑖𝑔ℎ

− 𝑅𝑙,𝑡
𝑙𝑜𝑤 = 𝛼𝑙

𝐶𝐴𝑃𝑀 + 𝛽𝑀𝐾𝑇,𝑙
𝐶𝐴𝑃𝑀𝑀𝐾𝑇𝑡 + 𝑒𝑙,𝑡,                  (1) 

where 𝑅𝑙,𝑡
ℎ𝑖𝑔ℎ

 is the return of decile 10 in month t, 𝑅𝑙,𝑡
𝑙𝑜𝑤 is the return of decile 1, 𝑀𝐾𝑇𝑡 is the 

excess return on the market portfolio, and 𝛽𝑀𝐾𝑇,𝑙
𝐶𝐴𝑃𝑀 is strategy l’s exposure to the market factor. 

To control for the size and value effects in China, Liu, Stambaugh, and Yuan (2019) propose 

a three-factor model, CH3, which contains the Chinese market, size, and value factors. In addition, 

they introduce a four-factor model, CH4, which adds a liquidity factor to control for the liquidity 

effect in China. We follow Liu, Stambaugh, and Yuan (2019) to construct the size, value, and 

liquidity factors, and provide details on their construction in Internet Appendix C1. Following 

Equation (1), we compute the alphas for the CH3 and CH4 models, 𝛼𝑙
𝐶𝐻3 and 𝛼𝑙

𝐶𝐻4, and their 

associated factor exposures as: 

𝑅𝑙,𝑡
ℎ𝑖𝑔ℎ

− 𝑅𝑙,𝑡
𝑙𝑜𝑤 = 𝛼𝑙

𝐶𝐻3 + 𝛽𝑀𝐾𝑇,𝑙
𝐶𝐻3 𝑀𝐾𝑇𝑡 + 𝛽𝑆𝑀𝐵,𝑙

𝐶𝐻3 𝑆𝑀𝐵𝑡 + 𝛽𝑉𝑀𝐺,𝑙
𝐶𝐻3 𝑉𝑀𝐺𝑡 + 𝑒𝑙,𝑡,        (2) 

𝑅𝑙,𝑡
ℎ𝑖𝑔ℎ

− 𝑅𝑙,𝑡
𝑙𝑜𝑤 = 𝛼𝑙

𝐶𝐻4 + 𝛽𝑀𝐾𝑇,𝑙
𝐶𝐻4 𝑀𝐾𝑇𝑡 + 𝛽𝑆𝑀𝐵,𝑙

𝐶𝐻4 𝑆𝑀𝐵𝑡 + 𝛽𝑉𝑀𝐺,𝑙
𝐶𝐻4 𝑉𝑀𝐺𝑡 + 𝛽𝑃𝑀𝑂,𝑙

𝐶𝐻4 𝑃𝑀𝑂𝑡 + 𝑒𝑙,𝑡, (3) 

where 𝑆𝑀𝐵𝑡, 𝑉𝑀𝐺𝑡, and 𝑃𝑀𝑂𝑡 are the Chinese size, value, and liquidity factors, respectively. 

3.3 Multiple Tests 

When testing whether the average high-minus-low return or alpha of a strategy is significantly 

different from zero, the conventional statistical inference is based on a “single-testing” framework, 

which assumes that there is only one hypothesis being tested, and the t-statistic cutoff is set to 1.96 

for the 5% significance level. However, in our setting, there are hundreds of anomalies being tested 

on the same dataset, and consequently using the single-testing hurdle rate could lead to false 

discoveries. Several recent studies, such as Harvey, Liu, and Zhu (2016) and Chordia, Goyal, and 
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Saretto (2020), advocate the alternative of “multiple testing” (simultaneous testing of more than 

one hypothesis) to address the issue of false discoveries in anomaly studies. 

Prior literature (e.g., Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 2001; Barras, 

Scaillet, and Wermers, 2010; Harvey and Liu, 2020) proposes several different methods for 

computing multiple testing statistics. Here we adopt the method of Harvey and Liu (2020) for two 

reasons. First, Harvey and Liu (2020) consider the tradeoff between Type I and II errors, while 

most other methods only control for Type I errors.2 Second, Harvey and Liu (2020) implement a 

double bootstrapping procedure to alleviate finite sample concerns, which is particularly relevant 

given the short history of the Chinese stock market. Details on applying the multiple-testing 

method of Harvey and Liu (2020) to Chinese data are provided in Internet Appendix C2. 

Following Harvey and Liu (2020), we first choose the parameter 𝑝0 , the percentage of 

strategies that are true, to control for Type II errors. Given that the choice of 𝑝0 is inherently 

subjective, Harvey and Liu (2020) recommend selecting 𝑝0  to be less than the single-testing 

significance rate in the data to accommodate multiple-testing adjustments. Since 23% of the 

univariate strategies in our sample have absolute t-statistics greater than 1.96, we set 𝑝0 to 15%, 

assuming that 8% out of the 23% significant strategies are false discoveries. 

Next, we determine the t-statistic cutoff under multiple testing. Harvey and Liu (2020) argue 

that an appropriate hurdle rate would balance between Type I and II errors, resulting in a desirable 

odds ratio (the ratio of Type I to Type II errors). Panel A of Figure 2 plots the Type I and II error 

rates and the odds ratio (Y-axis) against the t-statistic hurdle rate (X-axis) based on applying the 

double bootstrapping procedure of Harvey and Liu (2020) to our sample. When the hurdle rate 

 
2 In Internet Appendix C2, we report multiple-testing results using the methods of Benjamini and Hochberg (1995), 

Benjamini and Yekutieli (2001), and Barras, Scaillet, and Wermers (2010). Their t-statistic cutoffs are around 2.85. 

Given that these methods only control for Type I errors and ignore Type II errors, we focus on the Harvey and Liu’s 

(2020) method for our main analysis. 
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increases, the Type I error rate decreases, the Type II error rate increases, and the odds ratio 

decreases. When we fix the Type I error rate at 5%, the Type II error rate is at 6%, and the resulting 

odds ratio is at a reasonable 19% (close to 20% recommended by Harvey and Liu (2020)). The 

corresponding t-statistic cutoff is 2.85, which we use as our benchmark hurdle rate for multiple 

testing at the 5% significance level. 

[Insert Figure 2 Here] 

Since the choice of 𝑝0 is somewhat subjective, we also consider alternative values of 𝑝0, 

from 5% to 20%, and plot the corresponding t-statistic cutoff against 𝑝0 in Panel B of Figure 2. 

The figure shows that the hurdle rate declines slightly to 2.70 when we increase 𝑝0 from 15% to 

20%, as we are less likely to miss a true anomaly in the latter scenario (when a larger fraction of 

strategies are assumed to be true anomalies). On the other hand, the hurdle rate increases slightly 

to 2.95 when we decrease 𝑝0 to 10%. If we further decrease 𝑝0 to 5% (and thus assume only 5% 

of strategies are true anomalies, whereas 18% are false discoveries), then the hurdle rate becomes 

3.10. Given that the variation in the hurdle rate is relatively small for the range of 𝑝0 we consider, 

we use the benchmark hurdle rate of 2.85 (under a 15% 𝑝0) for our main analysis. 

4. Empirical Results on Univariate Strategies 

We summarize the significant univariate strategies using the single-testing hurdle rate in 

Section 4.1. Results using the multiple-testing hurdle rate are discussed in Section 4.2. Details on 

the significant strategies are provided in Section 4.3. We compare the anomaly patterns in China 

to those in the U.S. in Section 4.4. In Section 4.5, we examine the relations between anomaly 

returns and aggregate market conditions. 

4.1 Univariate Strategies under Single Testing 

We provide an overview of the univariate strategies with significant high-minus-low returns 
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in Table 3. The statistical significance is based on the Newey and West (1987) standard errors with 

four lags, using the conventional single-testing t-statistic cutoff of 1.96. 

[Insert Table 3 Here] 

Panel A of Table 3 shows that 104 out of 454 univariate strategies (23% significance rate) 

have significant value-weighted high-minus-low raw returns under single testing. Of the 104 

significant strategies, 25, 6, 7, 40, 2, 2, and 22 are from the liquidity, risk, past returns, profitability, 

value, investment, and others categories, respectively. 

Given the possibility that high-minus-low raw returns could represent compensation for 

exposures to systematic risk factors, we also report risk-adjusted returns (alphas) using the CAPM, 

the CH3 model, and the CH4 model. We find that the CAPM cannot explain the returns of the 

significant strategies, as the CAPM alphas are significant for 103 strategies, almost identical to the 

number of significant strategies in raw returns (104). On the other hand, when we use the CH3 

model to adjust returns, 37 strategies (8% significance rate) have significant alphas, indicating that 

the majority of the significant strategies in raw returns can be attributed to the size and value effects 

in China. Among the 37 significant CH3 alphas, 22 are based on trading signals (14 of which are 

from the liquidity category), and the other 15 are based on accounting signals (14 from the others 

category). When we further use the CH4 model for return adjustments, only 22 strategies (5% 

significance rate) have significant alphas, 10 of which are trading signals (3 from the liquidity 

category), and the other 12 are accounting signals (7 from the others category). Trading signals, 

especially liquidity measures, thus seem to be an important driver of the cross-section of stock 

returns in China not captured by existing factor models. Accounting signals, such as value and 

investment, on the other hand, are less effective in generating significant alphas, suggesting that 

they contain limited information about future returns after controlling for existing factor models. 
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When we examine equal-weighted returns in Panel B of Table 3, 189 out of 454 univariate 

strategies (42% significance rate) have significant high-minus-low raw returns under single testing, 

which almost doubles the number of significant strategies in value-weighted returns. This might 

not be surprising because equal-weighted returns are tilted towards smaller firms, which have been 

shown by prior literature to be associated with higher arbitrage costs and more significant 

anomalies in the U.S. and other international markets. Among the 189 significant strategies, 55, 

23, 17, 45, 13, 9, and 27 are from the liquidity, risk, past returns, profitability, value, investment, 

and others categories, respectively. 

When we apply the factor models to equal-weighted high-minus-low raw returns, 188 CAPM 

alphas are significant, again indicating that the market factor cannot explain the returns of the 

significant strategies. For the CH3 and CH4 models, 91 (20% significance rate) and 72 (16% 

significance rate) alphas are significant, respectively, with 39 and 27 significant alphas from the 

liquidity category alone. These equal-weighted results thus confirm the finding that liquidity is an 

important driver of the cross-section of Chinese stock returns.3 

4.2 Univariate Strategies under Multiple Testing 

When using the conventional single-testing t-statistic cutoff of 1.96, there is a concern that 

the significant strategies are actually false discoveries due to a low hurdle rate. To address this 

concern, we follow Harvey and Liu (2016) and apply a higher multiple-testing hurdle rate of 2.85 

to the univariate strategies. 

Table 4 reports the number of significant strategies under multiple testing, which declines 

substantially from its single-testing counterpart. For the value-weighted strategies in Panel A, 38 

 
3 Due to short-shelling constraints in China, we report the results for long-leg portfolios in Internet Appendix D Table 

D1. Only two strategies have significant value-weighted long-leg raw returns under single testing, both from the 

liquidity category. After risk adjustments, only one CH4 alpha is significant. 
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(8% significance rate) have significant high-minus-low raw returns, compared with 104 under 

single testing (Table 3 Panel A). Out of the 38 significant strategies, 5, 20, and 9 are from the 

liquidity, profitability, and others categories, respectively, with the remaining 4 coming from the 

risk, past returns, and value categories. After factor model risk adjustments, the number of 

significant CAPM alphas remains unchanged at 38, indicating that the market factor cannot explain 

the significant strategies. When we control for the size and value factors using the CH3 model, the 

number of significant alphas drops to four, with two from the liquidity category, one each from the 

risk and past returns categories, and none from the profitability or other accounting categories. 

When we further control for the liquidity factor using the CH4 model, none of the strategies have 

significant CH4 alphas. 

[Insert Table 4 Here] 

For the equal-weighted strategies in Panel B, the higher 2.85 hurdle rate cuts the number of 

significant strategies by almost half from 189 under single testing (Table 3 Pane B) to 108 under 

multiple testing. As before, the CAPM cannot explain these significant strategies, but the CH3 and 

CH4 models explain most of the strategies based on accounting signals and some based on trading 

signals. The number of significant alphas is 37 for the CH3 model and 21 for the CH4 model, with 

more than half of the significant CH3 alphas (20) and more than one third of the significant CH4 

alphas (8) coming from the liquidity category and the rest distributing about evenly across the risk, 

past returns, and profitability categories. 

In sum, the higher t-statistic cutoff under multiple testing substantially reduces the 

significance rate of univariate strategies. Very few of the value-weighted strategies survive the 

higher hurdle rate after the CH3 and CH4 risk adjustments. Among the 30 or so equal-weighted 

strategies that do survive the higher hurdle rate and CH3 and CH4 risk adjustments, the majority 
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are based on trading signals, liquidity measures in particular, while accounting signals largely fail 

to generate significant alphas. 

4.3 Details on Significant Univariate Strategies 

In this subsection, we provide detailed results on the significant univariate strategies. We 

focus on the 38 strategies with significant value-weighted high-minus-low raw returns under 

multiple testing, as indicated in Table 4. Table 5 reports their value-weighted and equal-weighted 

average raw returns and CH4 alphas as well as the associated t-statistics.4 

[Insert Table 5 Here] 

Among the 38 significant univariate strategies, five are liquidity measures, two are risk 

proxies, one is based on past returns, 20 are profitability measures, one is a value measure, and the 

remaining nine are from the others category. The significant liquidity measures are prior-month 

average daily share turnover, variation of daily share turnover, variation of daily RMB trading 

volume, turnover-adjusted number of zero daily trading volume, and GUBA media coverage. 

Using prior-month turnover-adjusted number of zero daily trading volume as an example, the 

average value-weighted high-minus-low raw return is 1.22% per month with a t-statistic of 3.12, 

and its CH4 alpha is much smaller at 0.23% per month with a t-statistic of 0.60. The average equal-

weighted high-minus-low raw return is 1.46% per month with a t-statistic of 5.93, and its CH4 

alpha is still substantial at 0.62% per month with a t-statistic of 2.30. For the other liquidity 

measures, the average value-weighted high-minus-low raw returns range from -1.17% to -1.56% 

per month with t-statistics from -2.87 to -3.71, and their CH4 alphas range from -0.16% to -0.69% 

with t-statistics from -0.46 to -2.22. The average equal-weighted high-minus-low raw returns range 

from -1.70% to -2.10% per month with t-statistics all above 5 in absolute value, and their CH4 

 
4 The complete results for all univariate strategies are reported in Internet Appendix D Table D2. 
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alphas range from -0.68% to -1.07% per month with t-statistics from -2.82 to -5.16. Overall, the 

evidence is consistent with a liquidity premium in the Chinese stock market, and the CH4 model 

with a liquidity factor can only partially explain it. 

The two significant risk proxies are idiosyncratic skewness and total skewness. For 

idiosyncratic skewness, we compute it as the skewness of residuals from regressing a stock’s daily 

excess returns on the CAPM model over the prior month. The average value-weighted and equal-

weighted high-minus-low raw returns are -0.67% and -0.74% per month with t-statistics of -3.15 

and -4.87, respectively. Therefore, Chinese firms with higher idiosyncratic skewness underperform 

firms with lower idiosyncratic skewness. After the CH4 risk adjustments, the value-weighted and 

equal-weighted alphas actually increase in magnitude to -0.90% and -1.01% per month with t-

statistics of -2.78 and -5.29, respectively, indicating that the CH4 model exacerbates the anomaly. 

The results for prior-month total skewness are somewhat weaker. The average value-weighted and 

equal-weighted high-minus-low raw returns are -0.88% and -0.74% per month with t-statistics of 

-2.96 and -4.48, respectively, and their CH4 alphas are -0.52% and -0.73% per month with t-

statistics of -1.46 and -3.82, respectively. 

There is only one significant strategy based on past returns, which is the seasonality return 

between year t-2 and t-5 (the average return across months t-24, t-36, t-48, and t-60). The average 

value-weighted and equal-weighted high-minus-low raw returns are 0.76% to 0.49% per month 

with t-statistics of 2.93 and 3.13, respectively. Thus, the seasonality anomaly of Heston and Sadka 

(2008) also exists in the Chinese market. Again, the CH4 model cannot explain the anomaly. The 

value-weighted and equal-weighted CH4 alphas are 0.89% and 0.49% per month with t-statistics 

of 2.52 and 2.56, respectively. 

The 20 significant profitability measures include return on equity, change in return on equity, 
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return on assets, change in return on assets, standard unexpected earnings, return on net operating 

assets, assets turnover, gross profits-to-lagged assets, operating profits-to-lagged book equity, 

operating profits-to-lagged assets, and sales growth. The average value-weighted high-minus-low 

raw returns are very large ranging from 0.49% to 1.26% per month with a minimum t-statistic of 

2.90. However, controlling for the CH4 factors reduces the alphas substantially to 0.20–0.65% per 

month, all but two of which have t-statistics that are less than 2. The average equal-weighted high-

minus-low raw returns range from 0.44% to 1.24% per month with a minimum t-statistic of 3.09. 

Similar to the value-weighted results, the CH4 alphas are considerably lower ranging from 0.16% 

to 0.78% per month with t-statistics from 0.84 to 4.54. 

The only significant value measure is quarterly earnings-to-price ratio. The average value-

weighted high-minus-low raw return is 1.23% per month with a t-statistic of 3.43. The CH4 model 

which contains a value factor can explain it, leaving a tiny alpha of 0.08% with a t-statistic of 0.38. 

The average equal-weighted high-minus-low raw return and CH4 alpha are higher than their value-

weighted counterparts at 1.35% and 0.39% per month with t-statistics of 5.04 and 2.51, 

respectively. 

The remaining nine significant strategies are from the others category, including tangibility, 

asset liquidity, and tax expense surprises. The average value-weighted high-minus-low raw returns 

range from 0.46% to 1.02% per month with a minimum t-statistic of 3.12. The CH4 model can 

largely explain them, reducing alphas to 0.34–0.92% per month with all but two of the t-statistics 

below 2. The average equal-weighted high-minus-low raw returns range from 0.33% to 0.54% per 

month with t-statistics from 1.50 to 3.69. The CH4 model reduces the alphas to 0.20–0.47% per 

month with a maximum t-statistic of 1.88. 

To heuristically compare the magnitude of high-minus-low raw returns and CH4 alphas 
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across the 38 significant strategies, we plot them in Figure 3. The blue columns represent the 

absolute values of the value-weighted or equal-weighted high-minus-low raw returns, and the red 

columns represent the absolute values of their CH4 alphas. The strategies are ordered, from the 

largest to the smallest, based on their absolute high-minus-low raw returns. Panel A shows that the 

absolute value-weighted high-minus-low raw returns vary from 0.46% per month for tax expense 

surprises to 1.56% per month for prior-month variation of daily share turnover, and the absolute 

CH4 alphas vary from 0.08% per month for quarterly earnings-to-price ratio to 0.92% per month 

for asset liquidity. Panel B shows that the absolute equal-weighted high-minus-low raw returns 

vary from 0.33% per month for tangibility to 2.10% per month for GUBA media coverage, and 

the absolute CH4 alphas vary from 0.16% per month for change in return on equity to 1.07% per 

month for GUBA media coverage. Overall, strategies based on trading signals appear to have larger 

absolute high-minus-low raw returns and CH4 alphas than strategies based on accounting signals. 

[Insert Figure 3 Here] 

4.4 Comparison with U.S. Anomaly Patterns 

To gain perspective on the anomaly patterns in China, we compare them with the patterns in 

the U.S., focusing on the significance rate and information content. Hou, Xue, and Zhang (2020) 

and Hou, Mo, Xue, and Zhang (2021) present comprehensive evidence on anomaly patterns in the 

U.S. We tabulate their results and report them next to our results from China in Table 6. We 

consider significant univariate strategies under both single testing and multiple testing. For 

multiple testing, the t-statistic cutoff is set to 2.85 for Chinese strategies and 2.78 for U.S. strategies 

following Hou, Xue, and Zhang (2020). For risk adjustments, we use the CH4 model for Chinese 
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strategies and the Hou, Mo, Xue, and Zhang (2021) q5 model for U.S. strategies.5 

[Insert Table 6 Here] 

Panel A of Table 6 presents comparison results on value-weighted strategies. For high-minus-

low raw returns, the significance rate across all categories is 23% for Chinese strategies under 

single testing vs. 35% for U.S. strategies. After risk adjustments, the significance rate drops to 5% 

in China vs. 5% in the U.S. Using the higher multiple-testing t-statistic cutoff, the significance rate 

for high-minus-low raw returns shrinks considerably to 8% in China vs. 18% in the U.S., and it 

drops further to 0% in China vs. 1% in the U.S. after risk adjustments. For the equal-weighted 

strategies reported in Panel B, the pattern is similar. For example, the significance rate for high-

minus-low raw returns is 42% in China under single testing vs. 56% in the U.S., and it drops to 

24% in China under multiple testing vs. 47% in the U.S.6 Overall, the significance rate is lower, 

especially in raw returns, for the univariate strategies in China than those in the U.S. 

Why is the significance rate lower in China? There are two potential explanations. First, it is 

possible that due to the relatively opaque information environment of the Chinese stock market, 

the signals we collect might be too noisy or weak to predict returns reliably. Second, the history of 

the Chinese stock market is relatively short and dominated by two major crises (the 2008 Global 

Financial Crisis and the 2015 Chinese stock market crash). The short time series and the high level 

of uncertainty could further reduce the t-statistics and consequently the number of significant 

strategies. 

We are also interested in the relative importance of trading or accounting signals for the 

 
5 The q5 model is first introduced in Hou, Mo, Xue, and Zhang (2021) with five factors: market, size, profitability, 

investment, and expected investment growth. It has been shown to perform better than competing factor models in 

explaining the cross-section of U.S. stock returns.  
6 After risk adjustments, the significance rate in China drops to 16% under single testing and 5% under multiple 

testing. Hou, Mo, Xue, and Zhang (2021) do not report the q5 alphas for equal-weighted strategies in the U.S. 
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significant strategies in China vs. the U.S. Therefore, in Table 6, we also report the contribution of 

each group of strategies to the overall significance rate. Panel A of Table 6 shows that the 

contribution of trading signals in China to the overall significant rate in value-weighted raw returns 

is 8% out of 23% (a 35% share) under single testing and 2% out of 8% (a 25% share) under multiple 

testing. By comparison, the contribution of trading signals in the U.S. is 9% out of 35% (a 26% 

share) under single testing and 7% out of 18% (a 39% share) under multiple testing. After risk 

adjustments, the contribution of trading signals is 2% out of 5% (a 40% share) in China under 

single testing and 0% out of 0% under multiple testing, and 1% out of 5% (a 20% share) in the 

U.S. under single testing and 0% out of 1% (a 0% share) under multiple testing. Overall, trading 

signals contribute more, and consequently accounting signals contribute less, to the significant 

strategies in China than in the U.S. The relative importance of trading signals in China is even 

more evident for the equal-weighted strategies in Panel B of Table 6. For example, the contribution 

of trading signals in China to the overall significance rate in equal-weighted raw returns is 21% 

out of 42% (a 50% share) under single testing and 11% out of 24% (a 46% share) under multiple 

testing, compared to 18% out of 56% (a 32% share) in the U.S. under single testing and 15% out 

of 47% (a 32% share) under multiple testing. 

Why do trading signals play a more important role in China than in the U.S., while the 

opposite is true for accounting signals? We think the answer again lies in the different features 

between the two markets. First, more than half of the daily trading volume in China comes from 

inexperienced and speculative retail investors, who chase past performance, provide liquidity, and 

create price volatility and noise. While this excessive trading leads to low returns for the retail 

investors, it also generates predictable return patterns that can be picked up by trading signals. In 

contrast, trading frictions are much less severe in the U.S., a mature market dominated by 
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institutional investors. Consequently, the relation between trading signals and future stock returns 

is less pronounced in the U.S. Second, due to China’s opaque information environment, accounting 

signals in China are less informative about firm fundamentals and therefore are less useful in 

predicting future price movements. On the other hand, accounting signals in the U.S. are more 

reflective of firm fundamentals and consequently are associated with more significant return 

predictability. 

Overall, the comparison of anomaly patterns between China and the U.S. reveals that the 

significance rate is lower in China than in the U.S., and that trading signals play a more important 

role in China than in the U.S. 

4.5 Anomalies and Aggregate Market Conditions 

The differences between China and the U.S. in anomaly patterns are consistent with evidence 

from the international anomaly literature that cross-country anomaly patterns heavily depend on 

country-level macro and market conditions. In this subsection, we directly link anomaly returns in 

China to these factors. 

4.5.1 Aggregate Market-Level Variables 

The international anomaly literature has documented three country-level variables that are 

important in explaining cross-country differences in anomaly returns: trading frictions (Watanabe, 

Xu, Yao, and Yu, 2013; Jacobs, 2016), financial market development (McLean, Pontiff, and 

Watanabe, 2009; Titman, Wei, and Xie, 2013), and accounting quality (Watanabe, Xu, Yao, and 

Yu, 2013). Following these studies, we measure trading frictions in China, FRIC, as the average 

firm-level idiosyncratic volatility, defined as the standard deviation of residuals obtained from 

regressing a stock’s daily excess returns in a given month on the CH4 model. To measure China’s 

financial market development, we compute DEV as the ratio of total market capitalization to GDP. 
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We measure China’s accounting quality, ACCQ, as the average value across firms of the 

accounting data quality grades from CNRDS. 

The U.S. anomaly literature also relates anomaly returns to investor sentiment and market 

liquidity. Following Baker, Wugler, and Yuan (2012), we construct China’s investor sentiment 

index, SENT, as the first principal component of market turnover, first-month IPO return, number 

of IPO firms, and volatility premium. To measure the market liquidity in China, we follow Chordia, 

Subrahmanyam, and Tong (2014) and compute LIQ as the average monthly share turnover across 

firms. 

Finally, given the strong presence of regulations in the Chinese stock market, we construct a 

regulation index, REGU, as the average value of the percentages of listed firms that are IPOs, that 

allow margin trading and short selling, and that have completed the split-share reform, in order to 

capture important regulatory interventions on investor composition and trading behavior. Details 

on the construction of the above six aggregate market-level variables are provided in Internet 

Appendix E. 

Panel A of Table 7 reports the summary statistics of the market-level variables. It is worth 

noting that the correlations among the variables are all positive, and in some cases fairly high. For 

example, FRIC is highly correlated with LIQ (0.81), and REGU is highly correlated with both 

DEV (0.84) and ACCQ (0.84). Therefore, we are cautious in interpreting individual coefficients in 

later discussions. 

[Insert Table 7 Here] 

4.5.2 Panel Regressions 

To understand whether and how the market-level variables influence anomaly returns in 

China, we follow a similar specification of Jacobs (2016) to estimate the following panel 
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regressions using all 454 univariate strategies as well as trading-based and accounting-based 

strategies separately: 

𝑅𝑙,𝑡
ℎ𝑖𝑔ℎ∗

− 𝑅𝑙,𝑡
𝑙𝑜𝑤∗

= 𝑏0 + 𝑏1𝐹𝑅𝐼𝐶𝑡 + 𝑏2𝐷𝐸𝑉𝑡 + 𝑏3𝐴𝐶𝐶𝑄𝑡 + 𝑏4𝑆𝐸𝑁𝑇𝑡 + 𝑏5𝐿𝐼𝑄𝑡 + 𝑏6𝑅𝐸𝐺𝑈𝑡 +

 𝑐1𝑀𝐾𝑇𝑡 + 𝑐2𝑆𝑀𝐵𝑡 + 𝑐3𝑉𝑀𝐺𝑡 + 𝑐4𝑃𝑀𝑂𝑡 + 𝑒𝑙,𝑡,                  (4) 

where 𝑅𝑙,𝑡
ℎ𝑖𝑔ℎ∗

and 𝑅𝑙,𝑡
𝑙𝑜𝑤∗

 represent the returns of decile 10 and decile 1 in month t, respectively, 

for strategy l, with the decile rankings re-aligned to ensure that the average high-minus-low return 

is positive over the sample period. We include on the right-hand side the six market-level variables. 

We also include the CH4 factors to control for systematic risk factors in China. The panel 

regressions are estimated with strategy fixed effects, and the standard errors are double-clustered 

by strategy and month. 

The regression coefficient estimates are reported in Panel B of Table 7, with columns I-III for 

value-weighted strategies and columns IV-VI for equal-weighted strategies. Across the six 

specifications, the coefficients on FRIC are all negative and marginally significant in half of them. 

The negative coefficients indicate that higher trading frictions are associated with smaller anomaly 

returns. The coefficients on DEV are also negative in all six specifications and are significant in 

four, suggesting that more developed financial markets are associated with smaller anomaly 

returns, especially for trading-based strategies. The coefficients on ACCQ are negative and 

significant in all specifications, implying that higher accounting quality is also associated with 

smaller anomaly returns in China. The coefficients on SENT are negative but insignificant in all 

specifications. The coefficients on LIQ are positive in all specifications and are significant in all 

but one cases, suggesting that improved market liquidity actually enhances anomaly returns. This 

might seem surprising because better market liquidity would make it easier for sophisticated 

investors to arbitrage away anomaly profits. However, in the case of China, the market-level 
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liquidity is likely driven by speculative retail investors who trade too often, and this “excessive” 

liquidity could exacerbate anomaly returns.7 Finally, the coefficients on REGU are also positive 

in all specifications and are significant in all but one specifications, which suggests that regulations 

in China are associated with larger anomaly returns. This is possibly due to the fact that the 

regulatory events captured by our index are designed to boost the stock market development, which 

result in bullish responses from the (mostly retail) market participants and consequently lead to 

larger anomaly returns. 

5. Empirical Results on Composite Strategies 

Given the low significance rate of the univariate strategies in China, readers might be 

wondering whether profitable investment strategies can be constructed in China at all. One 

possibility is to combine multiple signals and construct composite strategies. That is, with multiple 

signals available, investors could routinely evaluate the return predictive power of individual 

signals and dynamically adjust their portfolio exposures to different signals to maximize returns. 

In this section, we construct composite strategies using four different approaches and evaluate their 

performance in China. 

5.1 Constructing Composite Strategies 

To enter the composite strategies, we require a signal to be non-missing for at least 50% of 

the firm-month observations during the initial training window (July 2000 – June 2010). In 

 
7 To examine whether retail investors exacerbate anomaly returns in a rigorous way, we decompose market turnover 

into retail investor turnover and large trader turnover. Following the spirit of Lee and Radhakrishna (2000), Barber, 

Oden, and Zhu (2009), and Jiang, Liu, Peng, and Wang (2022), which assume that the trades with the largest size are 

more likely to come from large and sophisticated investors, we estimate large trader turnover as trading volume from 

the largest trade scaled by free-floating A-shares outstanding. Similarly, we estimate retail investor turnover as trading 

volume from the other trade groups scaled by free-floating A-shares outstanding. Internet Appendix E reports the 

details on the construction of these two types of turnover. We replace market turnover in panel regression (4) with 

retail investor turnover or large trader turnover or both, respectively. The results are shown in Internet Appendix E 

Table E1. We find that large trader turnover has no significant effect on anomaly returns, whereas retail investor 

turnover has positive and significant effect on anomaly returns. 
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addition, it cannot be missing for the entire cross-section of stocks in any month after its coverage 

starts. Altogether, 173 of the 208 signals we consider satisfy the above requirements. We follow 

the literature and replace firm-month observations with missing signals with their cross-sectional 

medians and then rank all stocks each month based on each signal and standardize the rankings to 

[0, 100].8 

The first approach we use to construct composite strategies is the composite score method, as 

in Stambaugh, Yu, and Yuan (2015). For each signal j and each month t, we re-align the 

standardized rankings to ensure that the average return spread between the top and bottom deciles 

is positive over an expanding window from July 2000 to month t (a minimum of ten years). A stock 

i’s re-aligned ranking is denoted 𝑟𝑎𝑛𝑘(𝑖, 𝑗, 𝑡) . The composite score for the stock in month t, 

𝑠𝑐𝑜𝑟𝑒(𝑖, 𝑡) , is the average of the standardized rankings across all available signals, i.e.,  

𝑠𝑐𝑜𝑟𝑒(𝑖, 𝑡) =
1

𝐽
∑ 𝑟𝑎𝑛𝑘(𝑖, 𝑗, 𝑡)𝐽

𝑗=1 . We then sort stocks into deciles based on their composite scores 

and long stocks in the top composite score decile and short stocks in the bottom decile. We compute 

both value-weighted and equal-weighted high-minus-low decile returns for month t+1 and 

rebalance the deciles monthly. The advantage of the composite score method is that it is 

straightforward to compute, and it combines information from individual signals while at the same 

time diversifies noise in individual signals. 

The second approach is the multiple regression method from Lewellen (2015). For each 

month t, we first estimate a cross-sectional regression of stock returns, 𝑅𝑖,𝑡, on a set of individual 

signals:9 

 
8  Our results are robust to using percentile rankings instead of standardized rankings. The robustness results are 

reported in Internet Appendix F Table F2. 
9 We use standardized rankings for returns and individual signals to minimize the impact of outliers on the regression 

coefficient estimates. 
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𝑅𝑖,𝑡 = 𝜃0,𝑡 + ∑ 𝜃𝑗,𝑡𝑠𝑖𝑔𝑛𝑎𝑙𝑖,𝑗,𝑡−1
𝑟𝐽

𝑗=1 + 𝑒𝑖,𝑡,                 (5) 

where 𝑠𝑖𝑔𝑛𝑎𝑙𝑖,𝑗,𝑡−1
𝑟  is the standardized ranking of signal j for stock i in month t-1. We obtain the 

average intercept, 𝑎𝑣𝑔𝜃̂0,𝑡  and the average slope coefficient, 𝑎𝑣𝑔𝜃̂𝑗,𝑡 , using the expanding 

window from July 2000 to month t (a minimum of ten years) and then compute the out-of-sample 

return forecast for stock i in month t+1 as 𝑅̂𝑖,𝑡+1 = 𝑎𝑣𝑔𝜃̂0,𝑡 + ∑ 𝑠𝑖𝑔𝑛𝑎𝑙𝑖,𝑗,𝑡
𝑟 𝑎𝑣𝑔𝜃̂𝑗,𝑡

𝐽
𝑗=1  , using 

information available up to month t. Finally, we sort stocks into deciles based on their expected 

return forecasts and long stocks in the top decile and short stocks in the bottom decile. Again, both 

value-weighted and equal-weighted high-minus-low decile returns are computed for month t+1, 

and the deciles are rebalanced monthly. Compared to the composite score method which is 

nonlinear, the multiple regression method considers multiple signals simultaneously using a linear 

setup. 

Our third method, Lasso, is also based on linear regressions using standardized data. The 

difference is that it adds a penalty function to overcome model overfitting when there are many 

signals with potential collinearity. In a nutshell, the Lasso method encourages simple and sparse 

models (models with less parameters), which can be thought of as a model selection method to 

manage high dimensionality and avoid overfitting the data. Details on the Lasso method are 

provided in Internet Appendix F. We follow Gu, Kelly, and Xiu (2020) and estimate a modified 

version of Equation (5) using panel data over the expanding window from July 2000 to month t (a 

minimum of ten years) and the Huber loss function as the penalty term. Using the estimated 

coefficients, we compute the out-of-sample return forecasts for month t+1 and sort stocks into 

deciles, and long stocks in the top expected return decile and short stocks in the bottom decile. 

The final approach we consider, random forest, is a non-parametric method. Random forest 

is an ensemble method known as bootstrap aggregation or “bagging” that combines forecasts from 
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many different scenarios into a single forecast. We follow the implementation of random forecast 

in Gu, Kelly, and Xiu (2020) and provide the details in Internet Appendix F. The output of random 

forest is a return forecast for each stock and each month. We use the expanding window from July 

2000 to month t (a minimum of ten years) to estimate the return forecasts for month t+1. Then, 

similar to the regression-based methods, we sort stocks into expected return deciles and long stocks 

in the top decile and short stocks in the bottom decile. Unlike the regression-based methods, 

however, the non-parametric estimation of random forest is able to capture nonlinearity in the 

relations between signals and returns, and it allows for interaction effects among signals. In 

addition, with a robust number of scenarios, it is less likely to overfit the data and thus could result 

in stable out-of-sample performance.10 

5.2 Performance of Composite Strategies 

Table 8 reports the average high-minus-low raw returns and CH4 alphas of the composite 

strategies based on the 173 available signals. Note that for all four methods of constructing 

composite strategies, we use the first 10 years of data to establish the initial estimates. Therefore, 

the sample period for Table 8 is from July 2010 to December 2020. 

[Insert Table 8 Here] 

Panel A reports the value-weighted returns of the composite strategies. For the composite 

score method, the average high-minus-low raw return is 1.66% per month with a highly significant 

t-statistic of 3.40. After risk adjustments, the CH4 alpha decreases to 0.22% per month with a t-

statistic of 0.61. For the multiple regression method, the average high-minus-low raw return is 

higher at 2.52% per month with a t-statistic of 5.78, and the CH4 alpha is 1.09% per month with a 

 
10 Lasso and random forest are relatively simple and stable compared to other more advanced machine learning 

methods, such as neural networks. In this paper, we do not study those methods as our goal is to simply demonstrate 

that machine learning presents an efficient way of combining signals to improve the performance of anomaly strategies. 
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t-statistic of 3.47. 

For the Lasso method, the average high-minus-low raw return is 2.68% per month with a t-

statistic of 5.20. The magnitude of the raw return spread is much larger than that of the composite 

score method and slightly larger than that of the multiple regression method. The improvement in 

performance is likely due to Lasso overcoming in-sample over-fit with the regularization technique, 

which achieves dimension reduction by dropping partially redundant and noisy signals. After risk 

adjustments using the CH4 model, the alpha is 1.12% per month with a t-statistic of 2.31, which 

again is better than the composite score and multiple regression methods. 

For the random forest method, the average high-minus-low raw return is 2.86% per month 

with a t-statistic of 6.24, which is larger in magnitude and statistically more significant than the 

return spreads for the other three methods. After risk adjustments, the CH4 alpha is still a 

substantial 1.28% per month with a t-statistic of 3.81, again the best of the four methods. The 

superior performance of random forest is consistent with the findings of Gu, Kelly, and Xiu (2020) 

and suggests that random forest, with its advanced and flexible algorithms that allow for 

nonlinearity and multiway signal interactions, is more efficient at extracting important and 

dominant return predicting signals from the noisy information environment in the Chinese stock 

market. 

How does the performance of composite strategies compare to that of univariate strategies? 

Table 5 and Figure 3 show that, for the 38 significant univariate strategies, the absolute value-

weighted high-minus-low raw returns range from 0.46% to 1.56% per month, and their absolute 

CH4 alphas range from 0.08% to 0.92% per month. Thus, the performance of the composite 

strategies (1.66–2.86% per month in high-minus-low raw returns and 0.22–1.28% per month in 

CH4 alphas) largely dominate that of the significant univariate strategies. In fact, the composite 
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strategies based on multiple regression, Lasso, and random forest (2.52%, 2.68%, and 2.86% per 

month in high-minus-low raw returns and 1.09%, 1.12%, and 1.28% per month in CH4 alphas, 

respectively) substantially outperform the very best univariate strategies (1.56% per month in high-

minus-low raw returns and 0.92% per month in CH4 alphas). 

Panel B reports the equal-weighted returns of the composite strategies, which again compare 

favorably with the univariate strategies. The average high-minus-low raw returns range from 2.03% 

and 3.06% per month for the composite score and random forest methods, respectively, to 3.16% 

and 3.24% per month for the multiple regression and Lasso methods, respectively, all with t-

statistics greater than 6.11  For comparison, the absolute equal-weighted high-minus-low raw 

returns for the 38 significant univariate strategies range from 0.33% to 2.10% per month, as shown 

in Table 5 and Figure 3. The CH4 alphas of the composite strategies range from 0.87% and 1.62% 

for the composite score and random forest methods, respectively, to 1.82% and 1.86% for the 

multiple regression and Lasso methods, respectively, with a minimum t-statistic of 3.27. For 

comparison, the absolute CH4 alphas of the significant univariate strategies range from 0.16% to 

1.07% per month. Thus, similar to the value-weighted results, the composite strategies largely 

outperform the significant univariate strategies in both raw and risk-adjusted returns. Again, the 

composite strategies based on multiple regression, Lasso, and random forest strictly dominate the 

best-performing univariate strategies in both raw and risk-adjusted returns. 

Since composite strategies dynamically shift weights between different signals, we are 

interested in what types of signals contribute the most to these strategies over time. Here we focus 

on the better performing composite strategies based on Lasso and random forest. Following Gu, 

Kelly, and Xiu (2020), we calculate the weight of a signal in Lasso as the squared coefficient on 

 
11 The average equal-weighted high-minus-low raw returns are always larger in magnitude and statistically more 

significant than their value-weighted counterparts. 
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that signal divided by the sum of squared coefficients across all signals. For random forest, we 

calculate the weight of a signal as the average decrease in mean squared forecast errors across 

regression trees.12  We normalize the weights to sum to one within a model to allow for easy 

interpretation across signals. 

In Figure 4, we use blue and red bars to plot the aggregate weights of trading and accounting 

signals, respectively, for the composite strategies based on Lasso (Panel A) and random forest 

(Panel B). We also plot the top three most important individual signals from each group. Several 

interesting findings emerge. First, trading signals contribute much more than accounting signals to 

the composite strategies over the past decade, accounting for more than 80% of the weight on 

average. Second, for the composite strategy based on Lasso, prior-month variation of daily RMB 

trading volume (a trading signal) is the most important signal across both groups, with an average 

weight of 46%. The second and third most important signals are prior-month return and daily 

Dimson beta (both trading signals), with average weights of 12% and 7%, respectively. By 

comparison, the weights on individual signals are more evenly distributed for the composite 

strategy based on random forest, with the three most important signals being prior-month variation 

of daily RMB trading volume, average daily RMB trading volume, and variation of daily share 

turnover (all trading signals), with average weights of 20%, 8%, and 7%, respectively. Third, 

among accounting signals, the three most important ones for the composite strategy based on Lasso 

are quarterly earnings-to-price ratio, R&D expense-to-market equity, and sales growth, with 

average weights of 5%, 3%, and 2%, respectively. For the composite strategy based on random 

forest, the three most important accounting signals are quarterly earnings-to-price ratio, change in 

 
12 Random forest consists of a set of regression trees. Each regression tree contains a set of internal nodes and leaves. 

We calculate for each internal node the change in mean squared forecast errors for a signal before and after the split, 

divide it by the sum of changes across all internal nodes, and then average across regression trees to obtain the weight 

of the signal. 
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return on equity, and return on equity, with average weights of 3%, 1%, and 1%, respectively. 

[Insert Figure 4 Here]  

In sum, the results in this section show that composite strategies compare favorably to, and 

in the case of those based on the multiple regression, Lasso, and random forest methods 

significantly outperform, the best-performing univariate strategies. This suggests that investors can 

improve the profitability of their trading strategies in China by combining individual signals 

together into composite signals. 

6. Including Microcaps 

In this section, we conduct robustness checks on the univariate and composite strategies using 

all Chinese A-share stocks. That is, we now include the smallest 30% of stocks (microcaps), which 

are previously excluded from our main analysis. 

[Insert Table 9 Here] 

Panel A of Table 9 reports the results for the univariate strategies under both single testing 

and multiple testing. For brevity, we focus our discussion on the multiple-testing results. Among 

the 454 univariate strategies, 28 of them have significant value-weighted raw returns, which 

translate into a 6% significance rate. These numbers are lower than those for the all-but-micro 

main sample (38 significant strategies and 8% significance rate, Table 4 Panel A). After including 

microcaps, the number of significant trading-based strategies increases from 8 to 9, whereas the 

number of significant accounting-based strategies decreases from 30 to 19. After risk adjustments 

using the CH4 model, 4 of the value-weighted alphas (all associated with trading-based strategies) 

are significant, compared with 0 for the all-but-micro main sample. The results for equal-weighted 

returns are similar. The number of univariate strategies with significant equal-weighted raw returns 

is lower than that for the main sample (96 vs. 108), but the number of significant equal-weighted 
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CH4 alphas is higher (47 vs. 21), with the majority of the significant alphas associated with trading-

based strategies. 

Panel B of Table 9 reports the results for the composite strategies after including microcaps. 

The average high-minus-low raw returns and CH4 alphas are larger in magnitude than their 

counterparts for the all-but-micro main sample. For example, the average value-weighted high-

minus-low raw returns for the composite strategies based on Lasso and random forest are 2.72% 

and 3.49% per month with t-statistics of 5.34 and 6.54, respectively, compared with 2.68% and 

2.86% per month with t-statistics of 5.20 and 6.24 (Table 8 Panel A), respectively, for the main 

sample. The value-weighted CH4 alphas for the composite strategies based on Lasso and random 

forest are 1.27% and 1.91% per month with t-statistics of 2.85 and 5.10, respectively, compared 

with 1.12% and 1.28% with t-statistics of 2.31 and 3.81 (Table 8 Panel A), respectively, for the 

main sample. Results for equal-weighted returns are similar. Overall, our results are robust after 

we include microcaps in China. 

7. Conclusion 

This paper provides a comprehensive study of the cross-section of stock returns in China 

using 454 strategies over the sample period 2000–2020. Using the single-testing t-statistic cutoff 

of 1.96, 104 strategies have significant value-weighted high-minus-low raw returns, and 189 have 

significant equal-weighted raw returns. After risk adjustments using the CH3 and CH4 models of 

Liu, Stambaugh, and Yuan (2019), more than half of the alphas become insignificant. Most of the 

significant alphas are associated with trading-based strategies, those based on liquidity measures 

in particular. To address the concern of false discoveries, we recalibrate the t-statistic cutoff to 2.85 

for the Chinese sample to accommodate multiple-testing adjustments. The higher hurdle rate 

reduces the number of significant strategies considerably. Only 38 (108) strategies have significant 
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value-weighted (equal-weighted) raw returns, and the number further reduces to 0 (21) after CH4 

risk adjustments. 

We compare the anomaly patterns in China to those in the U.S. The significance rate is lower 

in China, suggesting that individual signals might be too weak or noisy to generate significant 

return predictability. This is potentially due to the fact that the Chinese stock market has an opaque 

information environment and is dominated by retail investors, symptoms of market inefficiency. 

In terms of information content, trading signals contribute more to the significant strategies in 

China than in the U.S., whereas the opposite is true for accounting signals. We also relate anomaly 

returns in China to aggregate market conditions and find that they comove with financial market 

development, accounting quality, market liquidity, and regulations. 

Finally, we construct composite strategies by combining individual signals together and find 

that they, especially those based on machine learning methods, generate larger and statistically 

more significant returns than univariate strategies. Most of the composite strategies can pass the 

higher hurdle rate under multiple testing, even after risk adjustments. 
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Table 1. List of Signals 
This table lists the 208 individual signals. Based on the information content of the signals, they are separated into two broad groups: trading-based signals and 

accounting-based signals. The trading signals are further divided into three subgroups: liquidity, risk, and past returns. The accounting signals are also divided into 

four subgroups: profitability, value, investment, and others. The table reports the number and list of signals for each subgroup. Internet Appendix B provides the 

detailed definition of each signal. 

 

Group Subgroup 
No. of 

Signals 
List of Signals 

Trading- 

based  

Liquidity  35 

size, 1-month, 6-month, and 12-month share turnover, 1-month, 6-month, and 12-month variation of share turnover, 1-month, 

6-month, and 12-month coefficient of variation of share turnover, abnormal turnover, 1-month, 6-month, and 12-month RMB 

trading volume, 1-month, 6-month, and 12-month variation of RMB trading volume, 1-month, 6-month, and 12-month 

coefficient of variation of RMB trading volume, 1-month, 6-month, and 12-month Amihud illiquidity, 1-month, 6-month, and 

12-month turnover-adjusted liquidity, return-return, illiquidity-illiquidity, return-illiquidity, liquidity-return, and net liquidity 

betas, GUBA postings, comments, and readings, web search volume index 

Risk 18 

idiosyncratic volatility, idiosyncratic volatility per the CAPM, idiosyncratic volatility per the CH3 factor model, idiosyncratic 

volatility per the CH4 factor model, total volatility, idiosyncratic skewness per the CAPM, idiosyncratic skewness per the CH3 

factor model, idiosyncratic skewness per the CH4 factor model, total skewness, co-skewness, market beta using monthly 

returns, market beta using daily returns, downside beta, Frazzini-Pedersen beta, Dimson beta, tail risk, firm paper news, firm 

internet news 

Past 

Returns 
20 

cumulative returns from month t-4 to t-2, from t-7 to t-2, from t-10 to t-2, from t-12 to t-2, from month t-36 to t-13, from t-60 

to t-13, prior one-month return, industry return, industry lead-lag effect, cumulative return changes, 11-month and 6-month 

residual returns, 52-week high, maximum daily return, share price, cumulative abnormal returns around earnings 

announcement dates, seasonality returns in year t-1, non-seasonality returns in year t-1, seasonality returns between year t-2 

and t-5, non-seasonality returns between year t-2 and t-5 
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Group Subgroup 
No. of 

Signals 
List of Signals 

Accounting- 

based 

Profitability 35 

return on equity, 4-quarter change in return on equity, return in assets, 4-quarter change in return on assets, standard 

unexpected earnings, revenue surprises, annual and quarterly return on net operating assets, annual and quarterly profit 

margin, annual and quarterly assets turnover, annual and quarterly capital turnover, gross profits-to-assets, annual and 

quarterly gross profits-to-lagged assets, operating profits-to-book equity, annual and quarterly operating profits-to-

lagged book equity, operating profits-to-assets, annual and quarterly operating profits-to-lagged assets, annual and 

quarterly taxable income-to-book income, annual and quarterly book leverage, annual and quarterly sales growth, annual 

and quarterly fundamental score, annual and quarterly Ohlson’s O-score, annual and quarterly Altman’s Z-score  

Value 24 

annual and quarterly book-to-market equity, book-to-June-end-market equity, annual and quarterly debt-to-market 

equity, annual and quarterly assets-to-market equity, annual and quarterly earnings-to-price, annual and quarterly cash 

flow-to-price, sales growth rank, annual and quarterly enterprise multiple, annual and quarterly sales-to-price, annual 

and quarterly operating cash flow-to-price, debt-to-book equity, intangible return, annual and quarterly enterprise book-

to-price, annual and quarterly net debt-to-price 

Investment 37 

abnormal corporate investment, annual and quarterly investment-to-assets, changes in PPE and inventory-to-assets, net 

operating assets, changes in net operating assets, 1-year, 2-year, and 3-year investment growth, net share issues, 

composite equity issuance, composite debt issuance, inventory growth, inventory changes, operating accruals, total 

accruals, changes in net non-cash working capital, in current operating assets, and in current operating liabilities, changes 

in net non-current operating assets, in non-current operating assets, and in non-current operating liabilities, changes in 

net financial assets, in short-term investments, in long-term investments, in financial liabilities, and in book equity, 

discretionary accruals, percent operating accruals, percent total accruals, percent discretionary accruals, quarterly current 

asset growth, non-current asset growth, quarterly cash growth, fixed asset growth, non-cash current asset growth, and 

other asset growth 

Others 39 

advertising expense-to-market, growth in advertising expense, annual and quarterly R&D expense-to-market equity, 

annual and quarterly R&D expense-to-sales, annual and quarterly operating leverage, hiring rate, firm age, % change in 

sales minus % change in inventory, % change in sales minus % change in accounts receivable, % change in gross margin 

minus % change in sales, % change in sales minus % change in SG&A, effective tax rate, labor force efficiency, annual 

and quarterly tangibility, cash flow volatility, cash-to-assets, earnings persistence, earnings predictability, earnings 

smoothness, value relevance of earnings, earnings timeliness, earnings conservatism, annual and quarterly asset liquidity 

scaled by total assets, annual and quarterly asset liquidity scaled by market value of assets, tax expense surprises, changes 

in analyst earnings forecasts, revisions in analyst earnings forecasts, earnings forecast–to-price, analyst coverage, 

dispersion in analyst forecasts, institutional ownership, SOE indicator, margin trading and short selling indicator 
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Table 2. Summary Statistics of the Chinese and U.S. Stock Markets 
This table reports the summary statistics of the Chinese stock market in comparison to the U.S. over the sample 

period 2000–2020, including the time-series averages and standard deviations of the number of listed firms and 

total market capitalization (in trillions of dollars), and pooled firm-level averages and standard deviations of firm 

size (in billions of dollars), book-to-market ratio (B/M), annual share turnover, and annual stock returns. The 

number of firms is the number of firms with trading records at the end of each year. The total market capitalization 

is the sum of all firms’ market capitalization at the end of each year. Firm size is the product of closing price and 

number of shares outstanding at the end of each year. Firm B/M is the annual book-to-market ratio. Firm share 

turnover is the total number of shares traded in a year divided by the number of shares outstanding at the prior 

year-end. Annual stock return is the buy-and-hold return for each year. 

 
 China U.S. 
 Mean Stdev Mean Stdev 

No. of firms 2,103 890 4,292 759 

Total market cap (trillions of dollars) 3.81 3.32 18.54 7.29 

Firm size (billions of dollars) 1.81 8.09 4.32 24.25 

Firm B/M 0.40 0.26 0.84 1.35 

Firm annual share turnover 6.53 6.11 2.38 8.63 

Annual stock return 0.18 0.70 0.12 0.66 
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Table 3. Significant Univariate Strategies under Single Testing 
The table reports the numbers of univariate strategies with significant value-weighted (Panel A) and equal-weighted (Panel B) high-minus-low raw returns, CAPM 

alphas, CH3 alphas, and CH4 alphas, over the sample period from July 2000 to December 2020. The statistical significance is based on the Newey-West standard 

errors with four lags, using the conventional single-testing t-statistic cutoff of 1.96. 

 

 Overall Significance Trading-based Accounting-based 
  Rate Liquidity Risk Past Returns Profitability Value Investment Others 
 454  106 52 52 73 44 51 76 

Panel A. Value-Weighted Strategies 

Raw return 104 23% 25 6 7 40 2 2 22 

CAPM alpha 103 23% 25 6 7 40 2 2 21 

CH3 alpha 37 8% 14 3 5 0 0 1 14 

CH4 alpha 22 5% 3 2 5 4 0 1 7 

Panel B. Equal-Weighted Strategies 

Raw return 189 42% 55 23 17 45 13 9 27 

CAPM alpha 188 41% 55 22 17 45 13 9 27 

CH3 alpha 91 20% 39 10 11 18 1 4 8 

CH4 alpha 72 16% 27 10 12 14 2 3 4 
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Table 4. Significant Univariate Strategies under Multiple Testing 
The table reports the numbers of univariate strategies with significant value-weighted (Panel A) and equal-weighted (Panel B) high-minus-low raw returns, CAPM 

alphas, CH3 alphas, and CH4 alphas, over the sample period from July 2000 to December 2020. The statistical significance is based on the Newey-West standard 

errors with four lags, using the multiple-testing t-statistic cutoff of 2.85. 

 

 Overall Significance Trading-based Accounting-based 
  Rate Liquidity Risk Past returns Profitability Value Investment Others 
 454  106 52 52 73 44 51 76 

Panel A. Value-Weighted Strategies 

Raw return 38 8% 5 2 1 20 1 0 9 

CAPM alpha 38 8% 5 2 1 20 1 0 9 

CH3 alpha 4 1% 2 1 1 0 0 0 0 

CH4 alpha 0 0% 0 0 0 0 0 0 0 

Panel B. Equal-Weighted Strategies 

Raw return 108 24% 34 10 8 37 4 3 12 

CAPM alpha 107 24% 34 9 8 37 4 3 12 

CH3 alpha 37 8% 20 6 4 6 0 1 0 

CH4 alpha 21 5% 8 4 3 6 0 0 0 
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Table 5. Detailed Results on Significant Univariate Strategies 
The table reports the average high-minus-low raw returns and CH4 alphas as well as their associated t-statistics for 

the 38 univariate strategies with significant value-weighted high-minus-low raw returns under the multiple-testing t-

statistic cutoff of 2.85. Details on the construction of the 38 strategies are provided in Internet Appendix B. The 

complete results for all univariate strategies are reported in Internet Appendix D Table D2. 

 

 Value-Weighted Strategies Equal-Weighted Strategies 

 
Raw 

return 
t-stat 

CH4 

alpha 
t-stat 

Raw 

return 
t-stat 

CH4 

alpha 
t-stat 

Liquidity 

turn: share turnover, k=1, m=0, n=1 

turn1-1 -1.26 -2.97 -0.16 -0.46 -1.70 -5.53 -0.68 -2.82 

vturn: variation of share turnover, k=1, m=0, n=1 

vturn1-1 -1.56 -3.71 -0.69 -1.88 -1.89 -6.81 -1.01 -5.16 

vdtv: variation of RMB trading volume, k=1, m=0, n=1 

vdtv1-1 -1.17 -2.89 -0.39 -2.22 -1.99 -6.38 -0.84 -4.14 

Lm: turnover-adjusted number of zero daily trading volume, k=1, m=0, n=1 

Lm1-1 1.22 3.12 0.23 0.60 1.46 5.93 0.62 2.30 

GUBA social media coverage, n=1 

post_num1 -1.43 -2.87 -0.64 -1.73 -2.10 -5.77 -1.07 -2.98 

Risk 

isc: idiosyncratic skewness per the CAPM, k=1, m=0, n=1 

isc1 -0.67 -3.15 -0.90 -2.78 -0.74 -4.87 -1.01 -5.29 

ts: total skewness, k=1, m=0, n=1 

ts1 -0.88 -2.96 -0.52 -1.46 -0.74 -4.48 -0.73 -3.82 

Past Returns         

Ra25: seasonality returns between year t-2 and t-5 

Ra25 0.76 2.93 0.89 2.52 0.49 3.13 0.49 2.56 

Profitability         

roe: return on equity, n=1, 6 

roe1 1.26 3.73 0.34 0.92 1.18 4.47 0.48 1.78 

roe6 0.96 3.05 0.31 1.12 0.78 3.09 0.21 0.86 

droe: 4-quarter change in return on equity, n=1, 6, 12 

droe1 1.00 4.23 0.62 1.97 1.10 6.81 0.71 4.01 

droe6 0.78 4.25 0.35 1.51 0.75 5.81 0.39 2.72 

droe12 0.49 3.12 0.20 1.28 0.44 3.97 0.16 1.25 

roa: return on assets, n=1, 6 

roa1 1.23 3.62 0.53 1.38 1.24 4.56 0.64 2.07 

roa6 1.01 3.25 0.48 1.47 0.86 3.21 0.35 1.15 
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 Value-Weighted Strategies Equal-Weighted Strategies 

 
Raw 

return 
t-stat 

CH4 

alpha 
t-stat 

Raw 

return 
t-stat 

CH4 

alpha 
t-stat 

droa: 4-quarter change in return on assets, n=1, 6 

droa1 0.97 4.56 0.65 2.06 1.09 7.82 0.78 4.54 

droa6 0.80 4.72 0.42 1.82 0.76 6.75 0.44 3.26 

sue: standard unexpected earnings, n=1 

sue1 0.91 2.96 0.26 0.78 1.13 7.02 0.68 3.79 

rna: return on net operating assets, n=1 

rnaq1 0.84 3.05 0.30 0.74 1.12 4.49 0.52 1.87 

ato: assets turnover, annual sort 

ato 0.58 3.07 0.32 1.00 0.45 3.30 0.25 1.42 

gpla: gross profits-to-lagged assets, n=1, 6 

gplaq1 1.15 3.15 0.53 1.35 1.22 4.45 0.59 1.95 

gplaq6 0.97 2.90 0.43 1.23 0.83 3.11 0.29 0.99 

ople: operating profits-to-lagged book equity, n=1, 6 

opleq1 1.20 3.70 0.35 1.07 1.21 4.74 0.54 2.29 

opleq6 0.92 3.09 0.28 1.05 0.76 3.09 0.18 0.84 

opla: operating profits-to-lagged assets, n=1, 6 

oplaq1 1.09 3.16 0.48 1.28 1.24 4.59 0.64 2.19 

oplaq6 0.94 2.96 0.42 1.28 0.85 3.24 0.31 1.10 

sg: sales growth, n=1, 6 

sgq1 0.91 3.65 0.57 1.79 1.01 5.97 0.73 3.61 

sgq6 0.62 3.25 0.56 2.37 0.64 4.46 0.44 2.54 

Value         

ep: earnings-to-price, n=1 

epq1 1.23 3.43 0.08 0.38 1.35 5.04 0.39 2.51 

Others         

tan: tangibility, n=1, 6, 12 

tan 1.02 3.13 0.63 1.45 0.42 1.63 0.30 0.83 

tanq1 0.92 3.26 0.75 1.75 0.33 1.50 0.22 0.76 

tanq6 0.97 3.42 0.64 1.56 0.40 1.87 0.26 0.87 

tanq12 0.96 3.41 0.63 1.53 0.46 2.09 0.29 0.93 

ala: asset liquidity, n=1, 6, 12 

alaq1 0.97 4.05 0.92 2.34 0.52 3.07 0.47 1.88 

alaq6 0.81 3.34 0.65 1.81 0.54 3.18 0.39 1.55 

alaq12 0.74 3.12 0.59 1.72 0.49 2.82 0.36 1.41 

tes: tax expense surprises, n=6, 12 

tes6 0.54 3.40 0.35 1.69 0.46 3.69 0.24 1.79 

tes12 0.46 3.16 0.34 2.06 0.33 3.14 0.20 1.81 
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Table 6. Comparison with U.S. Anomaly Patterns 

The table reports the significance rates of the univariate strategies in China and the U.S. under both single testing and 

multiple testing. The overall significance rate in a country is the number of significant strategies divided by the total 

number of strategies in that country. The significance rate for a group (trading-based or accounting-based) of strategies 

is the number of significant strategies for that group divided by the total number of strategies across groups. The 

multiple-testing t-statistic cutoff is set to 2.85 for Chinese strategies and 2.78 for U.S. strategies. Risk adjustments are 

based on the CH4 model for Chinese strategies and the q5 model for U.S. strategies. The U.S. results are tabulated 

from Hou, Xue, and Zhang (2020) and Hou, Mo, Xue, and Zhang (2021), who do not estimate the q5 alphas for the 

equal-weighted strategies in the U.S. Panel A reports the results for the value-weighted strategies. Panel B reports the 

result for the equal-weighted strategies. 

 

Panel A. Significance Rate of Value-Weighted Strategies 

 Overall Trading-based Accounting-based 

 Single Multiple Single Multiple Single Multiple 

China raw return 23% 8% 8% 2% 15% 7% 

U.S. raw return 35% 18% 9% 7% 26% 11% 

China alpha (CH4) 5% 0% 2% 0% 3% 0% 

U.S. alpha (q5) 5% 1% 1% 0% 4% 1% 

 

Panel B. Significance Rate of Equal-Weighted Strategies 

 Overall Trading-based Accounting-based 

 Single Multiple Single Multiple Single Multiple 

China raw return 42% 24% 21% 11% 21% 12% 

U.S. raw return 56% 47% 18% 15% 38% 32% 

China alpha (CH4) 16% 5% 11% 3% 5% 1% 

U.S. alpha (q5) - - - - - - 
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Table 7. Anomaly Returns and Aggregate Market Conditions 
Panel A reports the summary statistics of six market-level variables: trading friction (FRIC), which is the average firm-

level idiosyncratic volatility based on the CH4 model, financial market development (DEV), which is the ratio of total 

market capitalization to GDP, accounting quality (ACCQ), which is the average firm-level accounting data quality 

grade from CNRDS, investor sentiment (SENT), which is the first principal component of market turnover, first-

month IPO return, the number of IPO firms, and the volatility premium, market liquidity (LIQ), which is the average 

firm-level monthly share turnover, and regulation (REGU), which is the average value of the percentages of listed 

firms that are recent IPOs, that allow margin trading and short selling, and that have completed the split-share reform.              

Panel B reports the regression coefficients and t-statistics from regressing the high-minus-low returns of all univariate 

strategies (and trading-based and accounting-based strategies separately) on the six market-level variables as well as 

the CH4 factors. The regressions are estimated with strategy fixed effects with standard errors double-clustered by 

strategy and month. 

 

Panel A. Summary Statistics of Market-Level Variables 

 Mean Stdev Correlation     
   DEV ACCQ SENT LIQ REGU 

FRIC 0.26 0.07 0.50 0.23 0.21 0.81 0.34 

DEV 0.45 0.25  0.64 0.67 0.54 0.84 

ACCQ 2.85 0.19   0.52 0.31 0.84 

SENT 0.00 1.00    0.28 0.73 

LIQ 0.46 0.24     0.43 

REGU 0.41 0.24      

 

Panel B. Panel Regressions 

 Value-Weighted Strategies Equal-Weighted Strategies 

 I II III IV V VI 

 All Trading-based Accounting-based All  Trading-based Accounting-based 

FRIC -0.15* -0.26* -0.06 -0.12 -0.24* -0.02 

 (-1.66) (-1.70) (-1.06) (-1.41) (-1.68) (-0.22) 

DEV -0.16** -0.33*** -0.02 -0.24** -0.38*** -0.11 

 (-2.11) (-3.03) (-0.29) (-2.43) (-2.89) (-0.83) 

ACCQ -0.22*** -0.31*** -0.14* -0.21*** -0.24** -0.18** 

 (-2.94) (-2.67) (-1.93) (-3.03) (-2.11) (-1.96) 

SENT -0.01 -0.02 0.00 -0.05 -0.03 -0.08 

 (-0.20) (-0.23) (-0.02) (-1.00) (-0.28) (-1.30) 

LIQ 0.30*** 0.46*** 0.16** 0.29*** 0.50*** 0.11 
 (3.02) (2.69) (2.54) (2.96) (3.01) (0.90) 

REGU 0.35*** 0.68*** 0.07 0.43*** 0.67*** 0.23* 
 (3.19) (3.79) (0.67) (3.98) (3.45) (1.69) 

MKT -0.03*** -0.08*** 0.01 -0.03*** -0.08*** 0.01 

 (-3.46) (-5.34) (1.58) (-3.85) (-5.87) (1.19) 

SMB -0.03 0.06 -0.12*** -0.01 0.08** -0.08*** 

 (-1.21) (1.21) (-5.31) (-0.27) (2.09) (-3.81) 

VMG 0.16*** 0.10** 0.22*** 0.17*** 0.13*** 0.21*** 

 (6.21) (2.46) (7.97) (8.87) (4.17) (8.07) 

PMO 0.06*** 0.12*** 0.01 0.04** 0.10*** -0.01 

 (3.58) (4.08) (0.76) (2.46) (3.27) (-0.36) 

Observations 105,894 49,212 56,682 105,894 49,212 56,682 

Adj.R2 2.4% 2.3% 6.6% 4.5% 5.4% 9.0% 
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Table 8. Performance of Composite Strategies 
The table reports the average high-minus-low raw returns and CH4 alphas as well as their associated t-statistics of the 

four composite strategies constructed using the composite score, multiple regression, Lasso, and random forest 

methods, over the period from July 2010 to December 2020. Data from July 2000 to June 2010 are used to establish 

the initial estimates of the composite signals. Panel A reports the results for the value-weighted composite strategies. 

Panel B reports the result for the equal-weighted composite strategies. 

 

 Composite Score Multiple Regression Lasso Random Forest 

 Return t-stat Return t-stat Return t-stat Return t-stat 

Panel A. Value-Weighted Strategies 

Raw return 1.66 3.40 2.52 5.78 2.68 5.20 2.86 6.24 

CH4 alpha 0.22 0.61 1.09 3.47 1.12 2.31 1.28 3.81 

Panel B. Equal-Weighted Strategies 

Raw return 2.03 6.85 3.16 9.61 3.24 8.10 3.06 8.64 

CH4 alpha 0.87 3.27 1.82 7.72 1.86 6.10 1.62 6.19 
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Table 9. Robustness Results Using All Chinese Firms 
The table reports the robustness results using all Chinese firms (including the smallest 30% firms based on market capitalization which are excluded from the main 

analysis). Panel A reports the numbers of univariate strategies with significant high-minus-low raw returns and CH4 alphas under both single testing and multiple 

testing. Panel B reports the average high-minus-low raw returns and CH4 alphas as well as their associated t-statistics of the four composite strategies constructed 

using the composite score, multiple regression, Lasso, and random forest methods. 

 

Panel A. Univariate Strategies 

 Overall Significance Trading-based Accounting-based 
  Rate Liquidity Risk Past Returns Profitability Value Investment Others 
 454  106 52 52 73 44 51 76 

Value-Weighted Strategies 

Single Testing          

Raw return 98 22% 34 7 9 27 0 0 21 

CH4 alpha 31 7% 17 3 5 1 0 0 5 

Multiple Testing          

Raw return 28 6% 7 1 1 9 0 0 10 

CH4 alpha 4 1% 3 1 0 0 0 0 0 

Equal-Weighted Strategies 

Single Testing          

Raw return 172 38% 64 28 22 31 10 1 16 

CH4 alpha 92 20% 53 13 12 9 1 0 4 

Multiple Testing          

Raw return 96 21% 44 18 7 17 1 0 9 

CH4 alpha 47 10% 37 7 1 2 0 0 0 
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Panel B. Composite Strategies 

 Composite Score Multiple Regression Lasso Random Forest 

 Return t-stat Return t-stat Return t-stat Return t-stat 

Value-Weighted Strategies 

Raw return 1.67 3.64 2.66 5.89 2.72 5.34 3.49 6.54 

CH4 alpha 0.24 0.72 1.28 3.87 1.27 2.85 1.91 5.10 

Equal-Weighted Strategies 

Raw return 2.08 8.35 3.45 10.04 3.57 8.47 3.52 8.83 

CH4 alpha 0.99 3.89 2.19 8.27 2.27 6.98 2.16 6.93 
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Figure 1. Market Characteristics of China and the U.S. 
The figure plots, for both the Chinese and U.S. stock markets, the number of listed firms (Panel A), the total market 

capitalization in trillions of dollars (Panel B), the average firm-level share turnover (Panel C), and the average firm-

level institutional ownership (Panel D), over the 2000–2020 sample period. 
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Figure 2. t-statistic Cutoff under Multiple Testing 
Panel A plots the Type I and Type II error rates and the odds ratio against the t-statistic hurdle rate based on applying 

the multiple-testing procedure of Harvey and Liu (2020) to the 454 univariate strategies in China. 𝑝0, the percentage 

of strategies that are true, is set to 15%. Panel B plots the t-statistic hurdle rate against 𝑝0 varying between 5% and 

20%. Details on the multiple-testing procedure are provided in Internet Appendix C2. 

 

Panel A. Error Rate and Odds Ratio against t-statistic Hurdle Rate 
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Figure 3. High-Minus-Low Raw Returns and CH4 Alphas of Significant Strategies 
The figure plots the magnitude of the value-weighted (Panel A) and equal-weighted (Panel B) high-minus-low raw 

returns and CH4 alphas for the 38 significant univariate strategies under multiple testing. The blue columns represent 

the absolute values of the high-minus-low raw returns, and the red columns represent the absolute values of their CH4 

alphas. The 38 strategies are ordered based on their absolute high-minus-low raw returns. 
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Figure 4. Signal Weights in Composite Strategies 
The figure plots, for each year from 2010 to 2020, the weights of individual signals in the composite strategies based 

on Lasso (Panel A) and random forest (Panel B). The weight of a signal in Lasso is the squared coefficient on that 

signal divided by the sum of squared coefficients across all signals. The weight of a signal in random forest is the 

average decrease in mean squared forecast errors across regression trees. Signal weights are normalized to sum to one 

within a model. The blue and red bars represent the aggregate weights of trading and accounting signals, respectively. 

The colored lines represent the top three most important trading and accounting signals. 
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Finding Anomalies in China 

—Internet Appendix 
A. Additional Details on Data 

We collect daily stock trading data from WIND, which includes stock code, trading date, 

closing price, trading volume, RMB trading volume, turnover, return with dividends, the number 

of free-float A-shares outstanding, the number of total A-shares outstanding, and the number of 

total shares outstanding.  

Three different types of shares coexist in the Chinese stock market: A shares, B shares, and 

H shares. A shares are the RMB-denominated shares of Chinese firms listed on the Shanghai and 

Shenzhen Stock Exchanges, and can be traded by domestic investors and foreign investors under 

QFII/RQFII/Stock Connect programs. B shares are the USD-denominated and HKD-denominated 

shares listed on the Shanghai and Shenzhen Stock Exchanges, respectively, and can be traded by 

domestic investors with appropriate currency accounts and foreign investors. H shares are the 

HKD-denominated shares listed on the Hong Kong Stock Exchange, and can be traded by domestic 

investors under QDII/Stock Connect programs and foreign investors. We follow the literature and 

focus on A shares in our study. 

We obtain firm financial statement data from WIND. The balance sheet and income statement 

data start from 1990, while the cash flow statement data start from 1997. Before January 2002, 

firms report their financial statements semi-annually (for accounting periods ending in June and 

December), and after January 2002, they report quarterly (for accounting periods ending in March, 

June, September, and December). To keep the data structure consistent throughout our sample 

period, we convert the semi-annual data before January 2002 to quarterly data by filling in the 

quarterly balance sheet data for March and September with the latest available semi-annual data, 

and quarterly income statement and cash flow statement data for March and September with one 

half of the latest available semi-annual data. Note that in China, the income statement and cash 

flow statement data are reported in cumulative values semi-annually before January 2002 and 

quarterly after January 2002. 

We obtain institutional ownership data from CSMAR, which includes the number and 

proportion of shares held by mutual funds, brokers, insurance companies, security funds, entrusts, 

etc. In China, institutions are required to report all of their holdings semi-annually and their top 10 

holdings quarterly. Hedge funds are not required to report their holdings. 

We obtain analyst earnings forecast data from SUNTIME, which contains 1.6 million reports 

produced by more than 22,000 analysts from 383 institutions and includes information on the 

analyst’s name, institution, forecast period, forecast release date, forecasted earnings per share, etc. 

We also obtain social media coverage from GUBA, web search index from WSVI, and news 

data from CFND via the Chinese Research Data Services (CNRDS) platform. GUBA data contains 

the numbers of daily postings, comments, and readings from the biggest retail investor forum in 

China, the East Money Stock Forum. The WSVI index is a daily web search volume index of 

Chinese firms. CFND contains the daily numbers of printed news and internet news from more 

than 400 newspapers and journals and more than 500 internet media sites. 
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B. Definitions of Signals 

B.1 Trading-Based Signals 

B.1.1 Liquidity 

B.1.1.1 Firm Size (size, size1, size6, and size12)  Firm size is calculated as the closing price 

(unadjusted) times the number of total A-shares outstanding, following Liu, Stambaugh, and Yuan 

(2019). For annual sorting, at the end of June of each year t, we sort stocks into deciles based on 

the June-end firm size and calculate monthly decile portfolio returns from July of year t to June of 

t+1. For monthly sorting, at the beginning of each month t, we sort stocks into deciles based on 

firm size at the end of month t-1 and calculate monthly decile portfolio returns over months [t, 

t+n-1] (n=1, 6, and 12, corresponding to size1, size6, and size12, respectively). 

B.1.1.2 Share Turnover (turn1-1, turn1-6, turn1-12, turn6-1, turn6-6, turn6-12, turn12-

1, turn12-6, and turn12-12)  Following Datar, Naik, and Radcliffe (1998), we calculate a stock’s 

share turnover (turn) as the average value of daily share turnover. Daily share turnover is calculated 

as the trading volume on a given day divided by the number of free-float A-shares outstanding. At 

the beginning of each month t, we sort stocks into deciles based on turn estimated with daily data 

over months [t-k, t-1] (k=1, 6, and 12, corresponding to turn1, turn6, and turn12, respectively). We 

require a minimum of 75% of daily trading records for the estimation period. We then calculate 

monthly decile portfolio returns over months [t, t+n-1] (n=1, 6, and 12, corresponding to turn1-1, 

turn1-6, turn1-12, turn6-1, turn6-6, turn6-12, turn12-1, turn12-6, and turn12-12, respectively). 

B.1.1.3 Variation of Share Turnover (vturn1-1, vturn1-6, vturn1-12, vturn6-1, vturn6-6, 

vturn6-12, vturn12-1, vturn12-6, and vturn12-12)  Following Chordia, Subrahmanyam, and 

Anshuman (2001), we measure a stock’s variation of share turnover (vturn) as the standard 

deviation of daily share turnover. At the beginning of each month t, we sort stocks into deciles 

based on vturn estimated with daily data over months [t-k, t-1] (k=1, 6, and 12, corresponding to 

vturn1, vturn6, and vturn12, respectively). We require a minimum of 75% of daily trading records 

for the estimation period. We then calculate monthly decile portfolio returns over months [t, t+n-

1] (n=1, 6, and 12, corresponding to vturn1-1, vturn1-6, vturn1-12, vturn6-1, vturn6-6, vturn6-12, 

vturn12-1, vturn12-6, and vturn12-12, respectively). 

B.1.1.4 Coefficient of Variation of Share Turnover (cvturn1-1, cvturn1-6, cvturn1-12, 

cvturn6-1, cvturn6-6, cvturn6-12, cvturn12-1, cvturn12-6, and cvturn12-12)  Following 

Chordia, Subrahmanyam, and Anshuman (2001), we measure a stock’s coefficient of variation of 

share turnover (cvturn) as the ratio of the standard deviation to the mean for daily share turnover. 

At the beginning of each month t, we sort stocks into deciles based on cvturn estimated with daily 

data over months [t-k, t-1] (k=1, 6, and 12, corresponding to cvturn1, cvturn6, and cvturn12, 

respectively). We require a minimum of 75% of daily trading records for the estimation period. 

We then calculate monthly decile portfolio returns over months [t, t+n-1] (n=1, 6, and 12, 

corresponding to cvturn1-1, cvturn1-6, cvturn1-12, cvturn6-1, cvturn6-6, cvturn6-12, cvturn12-1, 

cvturn12-6, and cvturn12-12, respectively). 

B.1.1.5 Abnormal Turnover (abturn1, abturn6, and abturn12)  Following Liu, 

Stambaugh, and Yuan (2019), at the beginning of each month t, we estimate abnormal turnover 

(abturn) as the ratio of the average daily turnover in month t-1 to the average daily turnover in the 

prior 12 months from month t-12 to t-1. We require a minimum of 75% of daily trading records in 

month t-1 and in the prior 12 months. At the beginning of each month t, we sort stocks into deciles 

based on abturn and calculate monthly decile portfolio returns over months [t, t+n-1] (n=1, 6, and 

12, corresponding to abturn1, abturn6, and abturn12, respectively). 

B.1.1.6 RMB Trading Volume (dtv1-1, dtv1-6, dtv1-12, dtv6-1, dtv6-6, dtv6-12, dtv12-1, 
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dtv12-6, and dtv12-12)  Following Brennan, Chordia, and Subrahmanyam (1998), we calculate 

a stock’s RMB trading volume (dtv) as the average value of daily RMB trading volume. At the 

beginning of each month t, we sort stocks into deciles based on dtv estimated with daily data over 

months [t-k, t-1] (k=1, 6, and 12, corresponding to dtv1, dtv6, and dtv12, respectively). We require 

a minimum of 75% of daily trading records. We then calculate monthly decile portfolio returns 

over months [t, t+n-1] (n=1, 6, and 12, corresponding to dtv1-1, dtv1-6, dtv1-12, dtv6-1, dtv6-6, 

dtv6-12, dtv12-1, dtv12-6, and dtv12-12, respectively). 

B.1.1.7 Variation of RMB Trading Volume (vdtv1-1, vdtv1-6, vdtv1-12, vdtv6-1, vdtv6-6, 

vdtv6-12, vdtv12-1, vdtv12-6, and vdtv12-12)  Following Chordia, Subrahmanyam, and 

Anshuman (2001), we measure a stock’s variation of RMB trading volume (vdtv) as the standard 

deviation of daily RMB trading volume. At the beginning of each month t, we sort stocks into 

deciles based on vdtv estimated with daily data over months [t-k, t-1] (k=1, 6, and 12, 

corresponding to vdtv1, vdtv6, and vdtv12, respectively). We require a minimum of 75% of daily 

trading records for the estimation period. We then calculate monthly decile portfolio returns over 

months [t, t+n-1] (n=1, 6, and 12, corresponding to vdtv1-1, vdtv1-6, vdtv1-12, vdtv6-1, vdtv6-6, 

vdtv6-12, vdtv12-1, vdtv12-6, and vdtv12-12, respectively). 

B.1.1.8 Coefficient of Variation of RMB Trading Volume (cvdtv1-1, cvdtv1-6, cvdtv1-12, 

cvdtv6-1, cvdtv6-6, cvdtv6-12, cvdtv12-1, cvdtv12-6, and cvdtv12-12)  Following Chordia, 

Subrahmanyam, and Anshuman (2001), we measure a stock’s coefficient of variation of RMB 

trading volume (cvdtv) as the ratio of the standard deviation to the mean for daily RMB trading 

volume. At the beginning of each month t, we sort stocks into deciles based on cvdtv estimated 

with daily data over months [t-k, t-1] (k=1, 6, and 12, corresponding to cvdtv1, cvdtv6, and cvdtv12, 

respectively). We require a minimum of 75% of daily trading records for the estimation period. 

We then calculate monthly decile portfolio returns over months [t, t+n-1] (n=1, 6, and 12, 

corresponding to cvdtv1-1, cvdtv1-6, cvdtv1-12, cvdtv6-1, cvdtv6-6, cvdtv6-12, cvdtv12-1, 

cvdtv12-6, and cvdtv12-12, respectively). 

B.1.1.9 Amihud Illiquidity (Ami1-1, Ami1-6, Ami1-12, Ami6-1, Ami6-6, Ami6-12, Ami12-

1, Ami12-6, and Ami12-12)  We calculate the Amihud's (2002) illiquidity measure (Ami) as the 

ratio of absolute daily stock return to daily RMB trading volume, averaged over the prior k months. 

At the beginning of each month t, we sort stocks into deciles based on Ami estimated with daily 

data over months [t-k, t-1] (k=1, 6, and 12, corresponding to Ami1, Ami6, and Ami12, respectively). 

We require a minimum of 75% of daily trading records for the estimation period. We then calculate 

monthly decile portfolio returns over months [t, t+n-1] (n=1, 6, and 12, corresponding to Ami1-1, 

Ami1-6, Ami1-12, Ami6-1, Ami6-6, Ami6-12, Ami12-1, Ami12-6, and Ami12-12, respectively). 

B.1.1.10 Turnover-adjusted Number of Zero Daily Trading Volume (Lm1-1, Lm1-6, 

Lm1-12, Lm6-1, Lm6-6, Lm6-12, Lm12-1, Lm12-6, and Lm12-12)  Following Liu (2006), we 

calculate the standardized turnover-adjusted number of zero daily trading volume over the prior k 

months (Lm) as follows: 

Lmk= [Number of days with volumes<150,000 in prior k months+

1

k-month turnover

Deflator
]

21k

NoTD
,    (B1) 

where k-month turnover is the sum of daily turnover over the prior k months, NoTD is the total 

number of trading days over the prior k months. We set the deflator to max {
1

𝑘−month turnover
} +

1, in which the maximization is taken across all stocks each month. The choice of the deflator 

ensures that (1/(k-month turnover))/Deflator is between zero and one for all stocks. Since there are 

many trading suspensions in China, we replace the number of days with zero volume in the prior 
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k months with the number of days with volume less than 150,000 shares. We require a minimum 

of 75% of daily trading records for the estimation period. At the beginning of each month t, we 

sort stocks into deciles based on Lm estimated with daily data over months [t-k, t-1] (k=1, 6, and 

12, corresponding to LM1, LM6, and LM12, respectively). We then calculate monthly decile 

portfolio returns over months [t, t+n-1] (n=1, 6, and 12, corresponding to Lm1-1, Lm1-6, Lm1-12, 

Lm6-1, Lm6-6, Lm6-12, Lm12-1, Lm12-6, and Lm12-12, respectively). 

B.1.1.11 Liquidity Betas (return-return, 𝜷𝒓𝒆𝒕 1, 𝜷𝒓𝒆𝒕 6, 𝜷𝒓𝒆𝒕 12, illiquidity-illiquidity, 

𝜷𝒍𝒄𝒄1, 𝜷𝒍𝒄𝒄6, 𝜷𝒍𝒄𝒄12, return-illiquidity, 𝜷𝒍𝒓𝒄1, 𝜷𝒍𝒓𝒄6, 𝜷𝒍𝒓𝒄12, liquidity-return, 𝜷𝒍𝒄𝒓1, 𝜷𝒍𝒄𝒓6, 

𝜷𝒍𝒄𝒓12, and net, 𝜷𝒏𝒆𝒕1, 𝜷𝒏𝒆𝒕6, 𝜷𝒏𝒆𝒕12)  Following Acharya and Pedersen (2005), we measure 

illiquidity using the Amihud's (2002) measure, Ami. For stock i in month t, 𝐴𝑚𝑖𝑡
𝑖 is the average 

ratio of absolute daily return to daily RMB trading volumes (in millions). We require a minimum 

of 75% of daily trading records. The market illiquidity, 𝐴𝑚𝑖𝑡
𝑀, is the value-weighted average of 

min (Amit
𝑖 , (30 − 0.25)/(0.30𝑃𝑡−1

𝑀 )), in which 𝑃𝑡−1
𝑀  is the ratio of the total market capitalization 

of CSI 300 index at the end of month t-1 to its value at the end of January 1998. We measure 

market illiquidity innovations, 𝜖𝑀𝑡
𝑐 , as the residual from the regression below: 

(0.25 + 0.3𝐴𝑚𝑖𝑡
𝑀𝑃𝑡−1

𝑀 ) = 𝑎0 + 𝑎1(0.25 + 0.30𝐴𝑚𝑖𝑡−1
𝑀 𝑃𝑡−1

𝑀 ) 

+𝑎2(0.25 + 0.3𝐴𝑚𝑖𝑡−2
𝑀 𝑃𝑡−1

𝑀 ) + 𝜖𝑀,𝑡
𝑐 .         (B2) 

Innovations to individual stock’s illiquidity, 𝜖𝑖,𝑡
𝑐  , are measured analogously by replacing 

𝐴𝑚𝑖𝑀  with min ( 𝐴𝑚𝑖𝑡
𝑖 , (30 − 0.25)/(0.30𝑃𝑡−1

𝑀 ))  in Equation (B2). Finally, we measure 
innovations to the market return, 𝜖𝑀𝑡

𝑟 , as the residual from the second-order autoregression of 
market returns. Following Acharya and Pedersen (2005), we define five measures of liquidity betas:  

Return-return: 𝛽𝑖
𝑟𝑒𝑡 =

𝐶𝑜𝑣(𝑟𝑖,𝑡 ,𝜖𝑀,𝑡
𝑟 )

𝑣𝑎𝑟(𝜖𝑀,𝑡
𝑟 −𝜖𝑀,𝑡

𝑐 )
,                    (B3) 

Illiquidity-illiquidity: 𝛽𝑖
𝑙𝑐𝑐 =

𝐶𝑜𝑣(𝜖𝑖,𝑡
𝑐 ,   𝜖𝑀,𝑡

𝑐 )

𝑣𝑎𝑟(𝜖𝑀,𝑡
𝑟 −𝜖𝑀,𝑡

𝑐 )
,               (B4) 

Return-illiquidity: 𝛽𝑖
𝑙𝑟𝑐 =

𝐶𝑜𝑣(𝑟𝑖,𝑡 ,𝜖𝑀,𝑡
𝑐 )

𝑣𝑎𝑟(𝜖𝑀,𝑡
𝑟 −𝜖𝑀,𝑡

𝑐 )
,                  (B5) 

Illiquidity-return: 𝛽𝑖
𝑙𝑐𝑟 =

𝐶𝑜𝑣(𝜖𝑖,𝑡
𝑐 , 𝜖𝑀,𝑡

𝑟 )

𝑣𝑎𝑟(𝜖𝑀,𝑡
𝑟 −𝜖𝑀,𝑡

𝑐 )
,                  (B6) 

Net: 𝛽𝑖
𝑛𝑒𝑡 = 𝛽𝑖

𝑟𝑒𝑡 + 𝛽𝑖
𝑙𝑐𝑐 − 𝛽𝑖

𝑙𝑟𝑐 − 𝛽𝑖
𝑙𝑐𝑟.                 (B7) 

At the beginning of each month t, we sort stocks into deciles based on 𝛽𝑖
𝑟𝑒𝑡, 𝛽𝑖

𝑙𝑐𝑐 , 𝛽𝑖
𝑙𝑟𝑐 , 𝛽𝑖

𝑙𝑐𝑟, 

and 𝛽𝑖
𝑛𝑒𝑡 estimated with the past 60 months from month t-60 to t-1. We require a minimum of 

75% of monthly returns for the estimation period. We calculate monthly decile portfolio returns 

over months [t, t+n-1] (n=1, 6, and 12, corresponding to 𝛽𝑟𝑒𝑡1, 𝛽𝑟𝑒𝑡6, 𝛽𝑟𝑒𝑡12, 𝛽𝑙𝑐𝑐1, 𝛽𝑙𝑐𝑐6, 

𝛽𝑙𝑐𝑐12, 𝛽𝑙𝑟𝑐1, 𝛽𝑙𝑟𝑐6, 𝛽𝑙𝑟𝑐12, 𝛽𝑙𝑐𝑟1, 𝛽𝑙𝑐𝑟6, 𝛽𝑙𝑐𝑟12, 𝛽𝑛𝑒𝑡1, 𝛽𝑛𝑒𝑡6, and 𝛽𝑛𝑒𝑡12, respectively). 

B.1.1.12 GUBA Social Media Coverage (post_num1, post_num6, post_num12, 

com_num1, com_num6, com_num12, read_num1, read_num6, and read_num12)  We 

obtain the numbers of GUBA postings, comments, and readings for Chinese listed firms from 

CNRDS. At the beginning of each month t, we sort stocks into deciles based on their average 

number of daily GUBA postings (post_num), comments (com_num), and readings (read_num) in 

month t-1. We then calculate monthly decile portfolio returns over months [t, t+n-1] (n=1, 6, and 

12, corresponding to post_num1, post_num6, post_num12, com_num1, com_num6, com_num12, 

read_num1, read_num6, and read_num12, respectively). 

B.1.1.13 Web Search Volume Index (wsvi1, wsvi6, and wsvi12)  We obtain the web search 

volume index of Chinese listed firms from CNRDS. At the beginning of each month t, we sort 

stocks into deciles based on their average daily web search volume index (wsvi) in month t-1. We 
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then calculate monthly decile portfolio returns over months [t, t+n-1] (n=1, 6, and 12, 

corresponding to wsvi1, wsvi6, and wsvi12, respectively). 

 

B.1.2 Risk 

B.1.2.1 Idiosyncratic Volatility (iv)  Following Ali, Hwang, and Trombley (2003), we 

calculate idiosyncratic volatility (iv) as the residual volatility from regressing a stock’s daily excess 

returns on the market excess returns over the prior year. At the end of June of each year t, we sort 

stocks into deciles based on iv estimated with daily returns from July of year t-1 to June of year t. 

We require a minimum of 75% of daily trading records. We then calculate monthly decile portfolio 

returns from July of year t to June of t+1. 

B.1.2.2 Idiosyncratic Volatility per the CAPM (ivc1, ivc6, and ivc12)  We calculate 

idiosyncratic volatility relative to the CAPM (ivc) as the residual volatility from regressing a 

stock’s daily excess returns on the market excess returns over the prior month. At the beginning of 

each month t, we sort stocks into deciles based on ivc estimated with daily returns from month t-

1. We require a minimum of 75% of daily trading records. We then calculate monthly decile 

portfolio returns over months [t, t+n-1] (n=1, 6, and 12, corresponding to ivc1, ivc6, and ivc12, 

respectively). 

B.1.2.3 Idiosyncratic Volatility per the CH3 Factor Model (ivch3-1, ivch3-6, and ivch3-

12) We calculate idiosyncratic volatility relative to the Liu, Stambaugh, and Yuan (2019) Chinese 

three-factor model (CH3) (ivch3) as the residual volatility from regressing a stock’s daily excess 

returns on the CH3 factors over the prior month. At the beginning of each month t, we sort stocks 

into deciles based on ivch3 estimated with daily returns from month t-1. We require a minimum of 

75% of daily trading records. We then calculate monthly decile portfolio returns over months [t, 

t+n-1] (n=1, 6, and 12, corresponding to ivch3-1, ivch3-6, and ivch3-12, respectively). 

B.1.2.4 Idiosyncratic Volatility per the CH4 Factor Model (ivch4-1, ivch4-6, and ivch4-

12)  We calculate idiosyncratic volatility relative to the Liu, Stambaugh, and Yuan (2019) Chinese 

four-factor model (CH4) (ivch4) as the residual volatility from regressing a stock’s daily excess 

returns on the CH4 factors over the prior month. At the beginning of each month t, we sort stocks 

into deciles based on ivch4 estimated with daily returns from month t-1. We require a minimum of 

75% of daily trading records. We then calculate monthly decile portfolio returns over months [t, 

t+n-1] (n=1, 6, and 12, corresponding to ivch4-1, ivch4-6, and ivch4-12, respectively). 

B.1.2.5 Total Volatility (tv1, tv6, and tv12)  At the beginning of each month t, we sort stocks 

into deciles based on total volatility (tv) estimated as the volatility of a stock’s daily returns from 

month t-1. We require a minimum of 75% of daily trading records. We then calculate monthly 

decile portfolio returns over months [t, t+n-1] (n=1, 6, and 12, corresponding to tv1, tv6, and tv12, 

respectively). 

B.1.2.6 Idiosyncratic Skewness per the CAPM (isc1, isc6, and isc12)  At the beginning of 

each month t, we sort stocks into deciles based on idiosyncratic skewness (isc) estimated as the 

skewness of the residuals from regressing a stock’s excess returns on the market excess returns 

using daily observations from month t-1. We require a minimum of 75% of daily trading records. 

We then calculate monthly decile portfolio returns over months [t, t+n-1] (n=1, 6, and 12, 

corresponding to isc1, isc6, and isc12, respectively). 

B.1.2.7 Idiosyncratic Skewness per the CH3 Factor Model (isch3-1, isch3-6, and isch3-

12)  At the beginning of each month t, we sort stocks into deciles based on idiosyncratic skewness 

relative to the CH3 factor model (isch3) estimated as the skewness of the residuals from regressing 

a stock’s excess returns on the CH3 factors using daily observations from month t-1. We require a 
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minimum of 75% of daily trading records. We then calculate monthly decile portfolio returns over 

months [t, t+n-1] (n=1, 6, and 12, corresponding to isch3-1, isch3-6, and isch3-12, respectively). 

B.1.2.8 Idiosyncratic Skewness per the CH4 Factor Model (isch4-1, isch4-6, and isch4-

12)  At the beginning of each month t, we sort stocks into deciles based on idiosyncratic skewness 

relative to the CH4 factor model (isch4) estimated as the skewness of the residuals from regressing 

a stock’s excess returns on the CH4 factors using daily observations from month t-1. We require a 

minimum of 75% of daily trading records. We then calculate monthly decile portfolio returns over 

months [t, t+n-1] (n=1, 6, and 12, corresponding to isch4-1, isch4-6, and isch4-12, respectively). 

B.1.2.9 Total Skewness (ts1, ts6, and ts12)  At the beginning of each month t, we sort stocks 

into deciles based on total skewness (ts) calculated with daily returns from month t-1. We require 

a minimum of 75% of daily trading records. We then calculate monthly decile portfolio returns 

over months [t, t+n-1] (n=1, 6, and 12, corresponding to ts1, ts6, and ts12, respectively). 

B.1.2.10 Co-skewness (cs1, cs6, and cs12)  Following Harvey and Siddique (2000), we 

measure co-skewness (cs) as 

𝑐𝑠 =
𝐸[𝜖𝑖,𝜖𝑚

2 ]

√𝐸[𝜖𝑖
2]𝐸[𝜖𝑚

2 ]

,                            (B8) 

in which 𝜖𝑖 is the residual from regressing stock i’s excess return on the market excess return, 

and 𝜖𝑚 is the demeaned market excess return. At the beginning of each month t, we sort stocks 

into deciles based on cs estimated with daily returns from month t-1. We require a minimum of 

75% of daily trading records. We then calculate monthly decile portfolio returns over months [t, 

t+n-1] (n=1, 6, and 12, corresponding to cs1, cs6, and cs12, respectively). 

B.1.2.11 Market Beta Using Monthly Returns (𝜷𝒎1, 𝜷𝒎6, and 𝜷𝒎12)  At the beginning 

of each month t, we sort stocks into deciles based on their market beta (𝛽𝑚), which is estimated 

with monthly returns from month t-60 to t-1. We require a minimum of 75% of monthly returns in 

the prior 60 months. We then calculate monthly decile portfolio returns over months [t, t+n-1] 

(n=1, 6, and 12, corresponding to 𝛽𝑚1, 𝛽𝑚6, and 𝛽𝑚12, respectively). 

B.1.2.12 Market Beta Using Daily Returns (𝜷1, 𝜷6, and 𝜷12)  At the beginning of each 

month t, we sort stocks into deciles based on their market beta (𝛽), which is estimated with daily 

returns from month t-12 to t-1. We require a minimum of 75% of daily trading records. We then 

calculate monthly decile portfolio returns over months [t, t+n-1] (n=1, 6, and 12, corresponding to 

𝛽1, 𝛽6, and 𝛽12, respectively). 

B.1.2.13 Downside Beta (𝜷−1, 𝜷−6, and 𝜷−12)  Following Ang, Chen, and Xing (2006), 

we calculate downside beta (𝛽−) as 

𝛽− =
𝐶𝑜𝑣(𝑟𝑖,𝑟𝑚|𝑟𝑚<𝜇𝑚)

𝑉𝑎𝑟(𝑟𝑚|𝑟𝑚<𝜇𝑚)
,                            (B9) 

where 𝑟𝑖 and 𝑟𝑚 are stock i’s and market excess returns, respectively, and 𝜇𝑚 is the average 

market excess return. At the beginning of each month t, we sort stocks into deciles based on 𝛽−, 

which is estimated with daily returns from month t-12 to t-1. We only use daily observations with 

𝑟𝑚 < 𝜇𝑚. We require a minimum of 75% of daily trading records. We then calculate monthly decile 

portfolio returns over months [t, t+n-1] (n=1, 6, and 12, corresponding to 𝛽−1, 𝛽−6, and 𝛽−12, 

respectively). 

B.1.2.14 The Frazzini-Pedersen Beta (𝜷𝑭𝑷1, 𝜷𝑭𝑷6, and 𝜷𝑭𝑷12)  Following Frazzini and 

Pedersen (2014), we estimate the market beta for stock i (𝛽𝐹𝑃) as 𝜌̂
𝜎̂𝑖

𝜎̂𝑚
, where 𝜎̂𝑖 and 𝜎̂𝑚 are 

the estimated return volatilities for the stock and the market, respectively, and 𝜌̂ is their return 

correlation. To estimate return volatilities, we compute the standard deviation of daily log returns 
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over a one-year rolling window (with a minimum of 75% of daily trading records). To estimate 

return correlations, we use overlapping three-day log returns, 𝑟𝑖,𝑡
3𝑑 = ∑ 𝑙𝑜𝑔(1 + 𝑅𝑖,𝑡+𝑘) ,2

𝑘=0  over 

a five-year rolling window (with a minimum of 75% of daily trading records). At the beginning of 

each month t, we sort stocks into deciles based on 𝛽𝐹𝑃 estimated at the end of month t-1. We then 

calculate monthly decile portfolio returns over months [t, t+n-1] (n=1, 6, and 12, corresponding to 

𝛽𝐹𝑃1, 𝛽𝐹𝑃6, and 𝛽𝐹𝑃12, respectively). 

B.1.2.15 The Dimson Beta (𝜷𝑫𝑴1, 𝜷𝑫𝑴6, and 𝜷𝑫𝑴12)  Following Dimson (1979), we use 

the current as well as the lead and lag of the market return when estimating the market beta: 

𝑟𝑖,𝑑 − 𝑟𝑓,𝑑 = 𝛼𝑖 + 𝛽𝑖1(𝑟𝑚,𝑑−1 − 𝑟𝑓,𝑑−1) + 𝛽𝑖2(𝑟𝑚,𝑑 − 𝑟𝑓,𝑑) + 𝛽𝑖3(𝑟𝑚,𝑑+1 − 𝑟𝑓,𝑑+1) + 𝜖𝑖,𝑑, (B10) 

where 𝑟𝑖,𝑑 is stock i’s return on day d, rm,d is the market return on day d, and rf,d is the risk-free 

rate (the one-year deposit rate). The Dimson beta for stock i (𝛽𝐷𝑀) is calculated as 𝛽̂𝑖1 + 𝛽̂𝑖2 +

𝛽̂𝑖3. At the beginning of each month t, we sort stocks into deciles based on 𝛽𝐷𝑀 estimated with 

daily returns from month t-1. We require a minimum of 75% of daily trading records. We then 

calculate monthly decile portfolio returns over months [t, t+n-1] (n=1, 6, and 12, corresponding to 

𝛽𝐷𝑀1, 𝛽𝐷𝑀6, and 𝛽𝐷𝑀12, respectively). 

B.1.2.16 Tail Risk (tail1, tail6, and tail12)  Following Kelly and Jiang (2014), we estimate 

common tail risk, 𝜆𝑡, by pooling daily returns for all stocks in month t, as follows: 

𝜆𝑡 =
1

𝐾𝑡
∑ log (

𝑟𝑘,𝑡

𝜇𝑡
)

𝐾𝑡
𝑘=1 ,                           (B11) 

where 𝜇𝑡 is the fifth percentile of all daily returns in month t, 𝑟𝑘,𝑡 is the k-th daily return that is 

below 𝜇𝑡, and 𝐾𝑡 is the total number of daily returns that are below 𝜇𝑡. At the beginning of each 

month t, we sort stocks into deciles based on tail risk (tail) estimated as the slope from regressing 

a stock’s monthly excess returns on one-month-lagged common tail risk over the most recent 120 

months from month t-120 to t-1. We require a minimum of 75% of monthly returns. We then 

calculate monthly decile portfolio returns over months [t, t+n-1] (n=1, 6, and 12, corresponding to 

tail1, tail6, and tail12, respectively). 

B.1.2.17 Firm News (paper_news1, paper_news6, paper_news12, inter_news1, 

inter_news6, and inter_news12)  At the beginning of each month t, we sort stocks into deciles 

based on their average numbers of daily reported paper news (paper_news) and internet news 

(inter_news) in month t-1. We then calculate monthly decile portfolio returns over months [t, t+n-

1] (n=1, 6, and 12, corresponding to paper_news1, paper_news6, paper_news12, inter_news1, 

inter_news6, and inter_news12, respectively). 

 

B.1.3 Past Returns 

B.1.3.1 Short-Term Prior k-month Cumulative Returns ( 𝑹𝒕−𝟒,𝒕−𝟐 1, 𝑹𝒕−𝟒,𝒕−𝟐 6, 

𝑹𝒕−𝟒,𝒕−𝟐 12, 𝑹𝒕−𝟕,𝒕−𝟐 1, 𝑹𝒕−𝟕,𝒕−𝟐 6, 𝑹𝒕−𝟕,𝒕−𝟐 12, 𝑹𝒕−𝟏𝟎,𝒕−𝟐 1, 𝑹𝒕−𝟏𝟎,𝒕−𝟐 6, 𝑹𝒕−𝟏𝟎,𝒕−𝟐 12, 

𝑹𝒕−𝟏𝟐,𝒕−𝟐1, 𝑹𝒕−𝟏𝟐,𝒕−𝟐6, and 𝑹𝒕−𝟏𝟐,𝒕−𝟐12)  At the beginning of each month t, we sort stocks into 

deciles based on their k-month cumulative returns over months [t-k-1, t-2] (k=3, 6, 9, 11, 

corresponding to 𝑅𝑡−4,𝑡−2, 𝑅𝑡−7,𝑡−2, 𝑅𝑡−10,𝑡−2, 𝑅𝑡−12,𝑡−2, respectively). We require a minimum 

of 75% of daily trading records. We then calculate monthly decile portfolio returns over months [t, 

t+n-1] (n=1, 6, and 12, corresponding to 𝑅𝑡−4,𝑡−21, 𝑅𝑡−4,𝑡−26, 𝑅𝑡−4,𝑡−212, 𝑅𝑡−7,𝑡−21, 𝑅𝑡−7,𝑡−26, 

𝑅𝑡−7,𝑡−2 12, 𝑅𝑡−10,𝑡−2 1, 𝑅𝑡−10,𝑡−2 6, 𝑅𝑡−10,𝑡−2 12, 𝑅𝑡−12,𝑡−2 1, 𝑅𝑡−12,𝑡−2 6, and 𝑅𝑡−12,𝑡−2 12, 

respectively). 

B.1.3.2 Prior One-month Return (𝑹𝒕−𝟏1, 𝑹𝒕−𝟏6, and 𝑹𝒕−𝟏12)  At the beginning of each 

month t, we sort stocks into deciles based on their prior-month return (𝑅𝑡−1 ). We require a 
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minimum of 75% of daily trading records. We then calculate monthly decile portfolio returns over 

months [t, t+n-1] (n=1, 6, and 12, corresponding to 𝑅𝑡−11, 𝑅𝑡−16, and 𝑅𝑡−112, respectively).  

B.1.3.3 Long-Term Prior k-month Cumulative Returns ( 𝑹𝒕−𝟔𝟎,𝒕−𝟏𝟑 1, 𝑹𝒕−𝟔𝟎,𝒕−𝟏𝟑 6, 

𝑹𝒕−𝟔𝟎,𝒕−𝟏𝟑12, 𝑹𝒕−𝟑𝟔,𝒕−𝟏𝟑1, 𝑹𝒕−𝟑𝟔,𝒕−𝟏𝟑6, and 𝑹𝒕−𝟑𝟔,𝒕−𝟏𝟑12)  At the beginning of each month t, 

we sort stocks into deciles based on their cumulative returns from month t-60 to t-13 (𝑅𝑡−60,𝑡−13), 

and separately, on their cumulative returns from month t-36 to t-13 (𝑅𝑡−36,𝑡−13). We require a 

minimum of 75% of daily trading records. We then calculate monthly decile portfolio returns over 

months [t, t+n-1] (n=1, 6, and 12, corresponding to 𝑅𝑡−60,𝑡−13 1, 𝑅𝑡−60,𝑡−13 6, 𝑅𝑡−60,𝑡−13 12, 

𝑅𝑡−36,𝑡−131, 𝑅𝑡−36,𝑡−136, and 𝑅𝑡−36,𝑡−1312, respectively). 

B.1.3.4 Industry Returns (inr1, inr6, and inr12)  We have 27 Shenwanhongyuan 

industries after excluding financial firms. At the beginning of each month t, we sort industries 

based on their prior six-month value-weighted returns (inr) from month t-6 to t-1. We form nine 

portfolios (9×3=27), each of which contains three different industries. We define the return of a 

given portfolio as the simple average of the three industry returns within the portfolio. We then 

calculate monthly portfolio returns for the nine portfolios over months [t, t+n-1] (n=1, 6, and 12, 

corresponding to inr1, inr6, and inr12, respectively). 

B.1.3.5 Industry Lead-Lag Effect (ilr1, ilr6, and ilr12)  We have 27 Shenwanhongyuan 

industries after excluding financial firms. At the beginning of each month t, we sort industries 

based on the value-weighted return of the portfolio consisting of the 30% largest firms within a 

given industry (ilr) in month t-1. We form nine portfolios (9×3=27), each of which contains three 

different industries. We define the return of a given portfolio as the simple average of the three 

value-weighted industry returns within the portfolio. We then calculate monthly portfolio returns 

for the nine portfolios over months [t, t+n-1] (n=1, 6, and 12, corresponding to ilr1, ilr6, and ilr12, 

respectively). 

B.1.3.6 Cumulative Return Changes (crchg1, crchg6, and crchg12)  At the beginning of 

each month t, we sort stocks into deciles based on their cumulative return changes (crchg) 

calculated as the cumulative returns from month t-7 to t-2 minus the cumulative returns from 

month t-13 to t-8. We require a minimum of 75% of daily trading records. We then calculate 

monthly decile portfolio returns over months [t, t+n-1] (n=1, 6, and 12, corresponding to crchg1, 

crchg6, and crchg12, respectively). 

B.1.3.7 Prior k-month Residual Returns ( 𝑹𝑹𝒕−𝟏𝟐,𝒕−𝟐 1, 𝑹𝑹𝒕−𝟏𝟐,𝒕−𝟐 6, 𝑹𝑹𝒕−𝟏𝟐,𝒕−𝟐 12, 

𝑹𝑹𝒕−𝟕,𝒕−𝟐1, 𝑹𝑹𝒕−𝟕,𝒕−𝟐6, and 𝑹𝑹𝒕−𝟕,𝒕−𝟐12)  At the beginning of each month t, we sort stocks 

into deciles based on the cumulative residual returns from month t-12 to t-2 (𝑅𝑅𝑡−12,𝑡−2) or from 

month t-7 to t-2 (𝑅𝑅𝑡−7,𝑡−2), scaled by their standard deviation over the same period. Residual 

returns are estimated from regressing monthly stock excess returns on the CH4 factors over the 

prior 36 months from month t−36 to t−1. We require monthly returns to be available for all prior 

36 months. We then calculate monthly decile portfolio returns over months [t, t+n-1] (n=1, 6, and 

12, corresponding to 𝑅𝑅𝑡−12,𝑡−2 1, 𝑅𝑅𝑡−12,𝑡−2 6, 𝑅𝑅𝑡−12,𝑡−2 12, 𝑅𝑅𝑡−7,𝑡−2 1, 𝑅𝑅𝑡−7,𝑡−2 6, and 

𝑅𝑅𝑡−7,𝑡−212, respectively). 

B.1.3.8 52-Week High (52wh1, 52wh6, and 52wh12)  At the beginning of each month t, 

we sort stocks into deciles based on their 52-week high (52wh), which is the ratio of its split-

adjusted price per share at the end of month t-1 to its highest (daily) split-adjusted price per share 

during the prior one-year period from month t-12 to t-1. We then calculate monthly decile portfolio 

returns over months [t, t+n-1] (n=1, 6, and 12, corresponding to 52wh1, 52wh6, and 52wh12, 

respectively). 
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B.1.3.9 Maximum Daily Return (mdr1, mdr6, and mdr12)  Due to the daily 10% price 

limit rule implemented after 1996 in China, we estimate maximum daily return (mdr) as the 

average of the 5 highest daily returns of a given stock from the prior month, following Bali, Brown, 

Murray, and Tang (2017). At the beginning of month t, we sort stocks into deciles based on mdr 

estimated with daily returns in month t-1. We require a minimum of 75% of daily trading records. 

We then calculate monthly decile portfolio returns over months [t, t+n-1] (n=1, 6, and 12, 

corresponding to mdr1, mdr6, and mdr12, respectively). 

B.1.3.10 Share Price (pps1, pps6, and pps12)  At the beginning of each month t, we sort 

stocks into deciles based on share price (pps) at the end of month t-1. Share price is adjusted for 

splitting and delisting. We then calculate monthly decile portfolio returns over months [t, t+n-1] 

(n=1, 6, and 12, corresponding to pps1, pps6, and pps12, respectively). 

B.1.3.11 Cumulative Abnormal Returns around Earnings Announcement Dates (abr1, 

abr6, and abr12)  We calculate cumulative abnormal stock returns (abr) around the latest 

quarterly earnings announcement date, following Chan, Jegadeesh, and Lakonishok (1996). 

𝑎𝑏𝑟𝑖 = ∑ (𝑟𝑖,𝑑 − 𝑟𝑚,𝑑)+1
𝑑=−2 ,                         (B12) 

where 𝑟𝑖,𝑑 is stock i’s return on day d (with the earnings announced on day 0), and 𝑟𝑚,𝑑 is the 

value-weighted market index return. We cumulate returns until one (trading) day after the 

announcement date to account for the one-day-delayed reaction to earnings news.  

At the beginning of each month t, we sort stocks into deciles based on their most recent abr. 

For a firm to enter portfolio sorts, we require the end of the fiscal quarter that corresponds to its 

most recent abr to be within 12 months prior to the portfolio formation. We then calculate monthly 

decile portfolio returns over months [t, t+n-1] (n=1, 6, and 12, corresponding to abr1, abr6, and 

abr12, respectively). 

B.1.3.12 Seasonality (Ra1, Rn1, Ra25, and Rn25)  Following Heston and Sadka (2008), at 

the beginning of each month t, we sort stocks into deciles based on various measures of past 

performance, including seasonality returns in year t-1 (returns in month t-12) (Ra1), non-

seasonality returns in year t-1 (average returns from month t-11 to t-1) (Rn1), seasonality returns 

between year t-2 and t-5 (average returns across month t-24, t-36, t-48, and t-60) (Ra25), and non-

seasonality returns between year t-2 and t-5 (average returns from month t-60 to t-13, excluding 

returns in month t-24, t-36, t-48, and t-60) (Rn25). We then calculate monthly decile portfolio 

returns for month t. 

 

B.2 Accounting-Based Signals 

B.2.1 Profitability 

B.2.1.1 Return on Equity (roe1, roe6, and roe12)  Following Hou, Xue, and Zhang (2015), 

we estimate return on equity (roe) as quarterly net income minus nonrecurrent gains/losses divided 

by one-quarter-lagged book equity. Book equity is total shareholders’ equity minus the book value 

of preferred stocks (zero if missing). At the beginning of each month t, we sort stocks into deciles 

based on their most recently released roe and calculate monthly decile portfolio returns over 

months [t, t+n-1] (n=1, 6, and 12, corresponding to roe1, roe6, and roe12, respectively). 

B.2.1.2 4-quarter Change in Return on Equity (droe1, droe6, and droe12)  We estimate 

change in return on equity (droe) as return on equity minus its value from four quarters ago. At the 

beginning of each month t, we sort stocks into deciles based on their most recently released droe 

and calculate monthly decile portfolio returns over months [t, t+n-1] (n=1, 6, and 12, 

corresponding to droe1, droe6, and droe12, respectively). 

B.2.1.3 Return on Assets (roa1, roa6, and roa12)  Following Balakrishnan, Bartov, and 
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Faurel (2010), we measure return on assets (roa) as quarterly net income minus nonrecurrent 

gains/losses divided by one-quarter-lagged total assets. At the beginning of each month t, we sort 

stocks into deciles based on their most recently released roa and calculate monthly decile portfolio 

returns over months [t, t+n-1] (n=1, 6, and 12, corresponding to roa1, roa6, and roa12, 

respectively). 

B.2.1.4 4-quarter Change in Return on Assets (droa1, droa6, and droa12)  We estimate 

change in return on assets (droa) as return on assets minus its value from four quarters ago. At the 

beginning of each month t, we sort stocks into deciles based on their most recently released droa 

and calculate monthly decile portfolio returns over months [t, t+n-1] (n=1, 6, and 12, 

corresponding to droa1, droa6, and droa12, respectively). 

B.2.1.5 Standard Unexpected Earnings (sue1, sue6, and sue12)  Following Foster, Olsen, 

and Shevlin (1984), we calculate standard unexpected earnings (sue) as the change in split-adjusted 

quarterly earnings per share from its value four quarters ago divided by the standard deviation of 

this change over the prior eight quarters (with a minimum of six quarters). At the beginning of 

each month t, we sort stocks into deciles based on their most recently released sue and calculate 

monthly decile portfolio returns over months [t, t+n-1] (n=1, 6, and 12, corresponding to sue1, 

sue6, and sue12, respectively). 

B.2.1.6 Revenue Surprises (rs1, rs6, and rs12)  Following Jegadeesh and Livnat (2006), 

we measure revenue surprises (rs) as the change in revenue per share from its value four quarters 

ago divided by the standard deviation of this change over the prior eight quarters (with a minimum 

of six quarters). At the beginning of each month t, we sort stocks into deciles based on their most 

recently released rs and calculate monthly decile portfolio returns over months [t, t+n-1] (n=1, 6, 

and 12, corresponding to rs1, rs6, and rs12, respectively). 

B.2.1.7 Return on Net Operating Assets (rna), Profit Margin (pm), and Assets Turnover 

(ato)  Soliman (2008) decomposes roe as roe = rna + flev × spread , where roe is return on 

equity, rna is return on net operating assets, flev is financial leverage, and spread is the difference 

between return on net operating assets and borrowing costs. We further decompose rna as 

pm × ato, where pm is profit margin, and ato is assets turnover.  

At the end of June of year t, we measure rna as operating income for the fiscal year ending in 

calendar year t-1 divided by net operating assets (noa) for the fiscal year ending in calendar year 

t-2. Net operating assets (noa) are calculated as operating assets minus operating liabilities. 

Operating assets are total assets minus cash and short-term investments (zero if missing). 

Operating liabilities are calculated as total assets minus debt in current liabilities (zero if missing), 

minus long-term debt (zero if missing), minus minority interests (zero if missing), minus preferred 

stocks (zero if missing), and minus common equity. pm is calculated as operating income divided 

by sales for the fiscal year ending in calendar year t-1, and ato is calculated as sales for the fiscal 

year ending in calendar year t-1 divided by noa for the fiscal year ending in year t-2. At the end of 

June of each year t, we sort stocks into deciles based on rna, pm, and ato, and calculate monthly 

decile portfolio returns from July of year t to June of t+1. 

B.2.1.8 Quarterly Return on Net Operating Assets (rnaq1, rnaq6, and rnaq12), Profit 

Margin (pmq1, pmq6, and pmq12), and Assets Turnover (atoq1, atoq6, and atoq12)  We 

measure quarterly return on net operating assets (rnaq) as quarterly operating income divided by 

one-quarter-lagged net operating assets. Net operating assets (noa) are operating assets minus 

operating liabilities. Operating assets are total assets minus cash and short-term investments (zero 

if missing). Operating liabilities are total assets minus debt in current liabilities (zero if missing), 

minus long-term debt (zero if missing), minus minority interests (zero if missing), minus preferred 
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stocks (zero if missing), and minus common equity. Quarterly profit margin (pmq) is quarterly 

operating income divided by quarterly sales. Quarterly assets turnover (atoq) is quarterly sales 

divided by one-quarter-lagged noa. At the beginning of each month t, we sort stocks into deciles 

based on their most recently released rnaq, pmq, and atoq, and calculate monthly decile portfolio 

returns over months [t, t+n-1] (n=1, 6, and 12, corresponding to rnaq1, rnaq6, rnaq12, pmq1, pmq6, 

pmq12, atoq1, atoq6, and atoq12, respectively). 

B.2.1.9 Capital Turnover (ct)  At the end of June of each year t, we sort stocks into deciles 

based on capital turnover (ct) measured as sales for the fiscal year ending in calendar year t-1 

divided by total assets for the fiscal year ending in year t-2. We then calculate monthly decile 

portfolio returns from July of year t to June of t+1. 

B.2.1.10 Quarterly Capital Turnover (ctq1, ctq6, and ctq12)  We measure quarterly 

capital turnover (ctq) as quarterly sales scaled by one-quarter-lagged total assets. At the beginning 

of each month t, we sort stocks into deciles based on their most recently released ctq and calculate 

monthly decile portfolio returns over months [t, t+n-1] (n=1, 6, and 12, corresponding to ctq1, 

ctq6, and ctq12, respectively). 

B.2.1.11 Gross Profits-to-Assets (gpa)  Following Novy-Marx (2013), we measure gross 

profits-to-assets (gpa) as total revenue minus cost of goods sold divided by total assets. At the end 

of June of each year t, we sort stocks into deciles based on gpa for the fiscal year ending in calendar 

year t-1 and calculate monthly decile portfolio returns from July of year t to June of t+1. 

B.2.1.12 Gross Profits-to-Lagged Assets (gpla)  We measure gross profits-to-lagged assets 

(gpla) as total revenue minus cost of goods sold divided by one-year-lagged total assets. At the end 

of June of each year t, we sort stocks into deciles based on gpla for the fiscal year ending in calendar 

year t-1 and calculate monthly decile portfolio returns from July of year t to June of t+1. 

B.2.1.13 Quarterly Gross Profits-to-Lagged Assets (gplaq1, gplaq6, and gplaq12)  We 

measure quarterly gross profits-to-lagged assets (gplaq) as quarterly total revenue minus cost of 

goods sold divided by one-quarter-lagged total assets. At the beginning of each month t, we sort 

stocks into deciles based on their most recently released gplaq and calculate monthly decile 

portfolio returns over months [t, t+n-1] (n=1, 6, and 12, corresponding to gplaq1, gplaq6, and 

gplaq12, respectively). 

B.2.1.14 Operating Profits-to-Book Equity (ope)  Following Fama and French (2015), we 

measure operating profits-to-book equity (ope) as total revenue minus cost of goods sold, minus 

selling, general, and administrative expenses, and minus interest expense, scaled by book equity. 

Book equity is total shareholders’ equity minus the book value of preferred stocks (zero if missing). 

At the end of June of each year t, we sort stocks into deciles based on ope for the fiscal year ending 

in calendar year t-1 and calculate monthly decile portfolio returns from July of year t to June of 

t+1. 

B.2.1.15 Operating Profits-to-Lagged Book Equity (ople)  We estimate operating profits-

to-lagged book equity (ople) as total revenue minus cost of goods sold, minus selling, general, and 

administrative expenses, and minus interest expense, scaled by one-year-lagged book equity. Book 

equity is total shareholders’ equity minus the book value of preferred stocks (zero if missing). At 

the end of June of each year t, we sort stocks into deciles based on ople for the fiscal year ending 

in calendar year t-1 and calculate monthly decile portfolio returns from July of year t to June of 

t+1. 

B.2.1.16 Quarterly Operating Profits-to-Lagged Book Equity (opleq1, opleq6, and 

opleq12)  We measure quarterly operating profits-to-lagged book equity (opleq) as quarterly total 

revenue minus cost of goods sold, minus selling, general, and administrative expenses, and minus 
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interest expense, scaled by one-quarter-lagged book equity. Book equity is total shareholders’ 

equity minus the book value of preferred stocks (zero if missing). At the beginning of each month 

t, we sort stocks into deciles based on their most recently released opleq and calculate monthly 

decile portfolio returns over months [t, t+n-1] (n=1, 6, and 12, corresponding to opleq1, opleq6, 

and opleq12, respectively). 

B.2.1.17 Operating Profits-to-Assets (opa)  Following Ball, Gerakos, Linnaimma, and 

Nikolaev (2015), we measure operating profits-to-assets (opa) as total revenue minus cost of goods 

sold, minus selling, general, and administrative expenses, and minus interest expense, scaled by 

total assets. At the end of June of each year t, we sort stocks into deciles based on opa for the fiscal 

year ending in calendar year t-1 and calculate monthly decile portfolio returns from July of year t 

to June of t+1. 

B.2.1.18 Operating Profits-to-Lagged Assets (opla)  We measure operating profits-to-

lagged assets (opla) as total revenue minus cost of goods sold, minus selling, general, and 

administrative expenses, and minus interest expense, scaled by one-year-lagged total assets. At the 

end of June of each year t, we sort stocks into deciles based on opla for the fiscal year ending in 

calendar year t-1 and calculate monthly decile portfolio returns from July of year t to June of t+1. 

B.2.1.19 Quarterly Operating Profits-to-Lagged Assets (oplaq1, oplaq6, and oplaq12)  

We measure quarterly operating profits-to-lagged assets (oplaq) as quarterly total revenue minus 

cost of goods sold, minus selling, general, and administrative expenses, and minus interest expense, 

scaled by one-quarter-lagged total assets. At the beginning of each month t, we sort stocks into 

deciles based on their most recently released oplaq and calculate monthly decile portfolio returns 

over months [t, t+n-1] (n=1, 6, and 12, corresponding to oplaq1, oplaq6, and oplaq12, respectively). 

B.2.1.20 Taxable Income-to-Book Income (tbi)  Following Green, Hand, and Zhang (2013), 

we measure taxable income-to-book income (tbi) as pretax income divided by net income. At the 

end of June of each year t, we sort stocks into deciles based on tbi for the fiscal year ending in 

calendar year t-1 and calculate monthly decile portfolio returns from July of year t to June of t+1. 

B.2.1.21 Quarterly Taxable Income-to-Book Income (tbiq1, tbiq6, and tbiq12)  We 

measure quarterly taxable income-to-book income (tbiq) as quarterly pretax income divided by net 

income. At the beginning of each month t, we sort stocks into deciles based on their most recently 

released tbiq and calculate monthly decile portfolio returns over months [t, t+n-1] (n=1, 6, and 12, 

corresponding to tbiq1, tbiq6, and tbiq12, respectively). 

B.2.1.22 Book Leverage (bl)  Following Fama and French (1992), we measure book 

leverage (bl) as total assets divided by book equity. Book equity is total shareholders’ equity minus 

the book value of preferred stocks (zero if missing). At the end of June of each year t, we sort 

stocks into deciles based on bl for the fiscal year ending in calendar year t-1 and calculate monthly 

decile portfolio returns from July of year t to June of t+1. 

B.2.1.23 Quarterly Book Leverage (blq1, blq6, and blq12)  We measure quarterly book 

leverage (blq) as total assets divided by book equity. Book equity is total shareholders’ equity 

minus the book value of preferred stocks (zero if missing). At the beginning of each month t, we 

sort stocks into deciles based on their most recently released blq and calculate monthly decile 

portfolio returns over months [t, t+n-1] (n=1, 6, and 12, corresponding to blq1, blq6, and blq12, 

respectively). 

B.2.1.24 Sales Growth (sg)  Following Lakonishok, Shleifer, and Vishny (1994), we 

estimate sales growth (sg) as the growth in annual sales from the fiscal year ending in calendar 

year t-2 to the fiscal year ending in calendar year t-1. We exclude firms with non-positive sales. At 

the end of June of each year t, we sort stocks into deciles based on sg for the fiscal year ending in 
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calendar year t-1 and calculate monthly decile portfolio returns from July of year t to June of t+1. 

B.2.1.25 Quarterly Sales Growth (sgq1, sgq6, and sgq12)  We compute quarterly sales 

growth (sgq) as quarterly sales divided by its value four quarters ago. We exclude firms with non-

positive sales. At the beginning of each month t, we sort stocks into deciles based on their most 

recently released sgq and calculate monthly decile portfolio returns over months [t, t+n-1] (n=1, 

6, and 12, corresponding to sgq1, sgq6, and sgq12, respectively). 

B.2.1.26 Fundamental Score (F)  Piotroski (2000) classifies each fundamental signal as 

either good or bad, depending on the signal’s implication for future stock prices and profitability. 

An indicator variable for a particular signal is 1 if its realization is good and 0 if it is bad. The 

aggregate signal, denoted F, is the sum of the eight binary signals. F is designed to measure the 

overall quality, or strength, of the firm’s financial position. The eight fundamental signals are 

chosen to measure three areas of a firm’s financial condition: profitability, liquidity, and operating 

efficiency. 

We use four variables to measure profitability: (1) roa is net income minus nonrecurrent 

gains/losses scaled by one-year-lagged total assets. If the firm’s roa is positive, the indicator 

variable Froa equals one and zero otherwise. (2) Cf/A is cash flows from operations scaled by one-

year-lagged total assets. If the firm’s Cf/A is positive, the indicator variable FCf/A equals one and 

zero otherwise. (3) droa is the current year’s roa minus the prior year’s roa. If droa is positive, the 

indicator variable Fdroa equals one and zero otherwise. (4) the indicator FAcc equals one if Cf/A > 

roa and zero otherwise. 

We use two variables to measure changes in capital structure and a firm’s ability to meet debt 

obligations. Piotroski (2000) assumes that an increase in leverage, a deterioration in liquidity, or 

the use of external financing is a bad signal about financial risk. (1) dlever is the change in the 

ratio of total long-term debt to the average of current and one-year-lagged total assets. Fdlever equals 

one if the firm’s leverage ratio falls (dlever<0) and zero otherwise. (2) dliquid measures the change 

in a firm’s current ratio from the prior year, in which the current ratio is the ratio of current assets 

to current liabilities. An improvement in liquidity (dliquid>0) is a good signal regarding the firm’s 

ability to service debt obligations. The indicator Fdliquid equals one if the firm’s liquidity improves 

and zero otherwise. 

The remaining two signals are designed to measure changes in the efficiency of the firm’s 

operations that reflect two key constructs underlying the decomposition of return on assets. (1) 

dmargin is the firm’s current gross margin ratio, measured as gross margin scaled by sales, minus 

the prior year’s gross margin ratio. An improvement in margins signifies a potential improvement 

in factor costs, a reduction in inventory costs, or a rise in the price of the firm’s product. The 

indictor Fdmargin equals one if dmargin>0 and zero otherwise. (2) dturn is the firm’s current year 

asset turnover ratio, measured as total sales scaled by one-year-lagged total assets, minus the prior 

year’s asset turnover ratio. An improvement in asset turnover ratio signifies greater productivity 

from the asset base. The indicator, Fdturn, equals one if dturn>0 and zero otherwise.  

Piotroski (2000) forms a composite score (F) as the sum of the individual binary signals: 

𝐹 = 𝐹𝑟𝑜𝑎 + 𝐹𝑑𝑟𝑜𝑎 + 𝐹𝐶𝑓/𝐴 + 𝐹𝐴𝑐𝑐 + 𝐹𝑑𝑚𝑎𝑟𝑔𝑖𝑛 + 𝐹𝑑𝑡𝑢𝑟𝑛 + 𝐹𝑑𝑙𝑒𝑣𝑒𝑟 + 𝐹𝑑𝑖𝑞𝑢𝑖𝑑.    (B13) 

At the end of June of each year t, we sort stocks based on F for the fiscal year ending in 

calendar year t−1 to form six portfolios: low (F = 0, 1, 2), 3, 4, 5, 6, and high (F = 7, 8). Because 

extreme F scores are rare, we combine scores 0, 1, and 2 into the low portfolio and scores 7 and 8 

into the high portfolio. We then calculate monthly decile portfolio returns from July of year t to 

June of t+1. 

B.2.1.27 Quarterly Fundamental Score (Fq1, Fq6, and Fq12)  We use quarterly 
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accounting data and the same binary variables from Piotroski (2000) to measure quarterly F-score. 

Four variables used to measure profitability are: (1) roa is quarterly net income minus nonrecurrent 

gains/losses scaled by one-quarter-lagged total assets. If the firm’s roa is positive, the indicator 

variable Froa equals one and zero otherwise. (2) Cf/A is cash flows from operation scaled by one-

quarter-lagged total assets. If the firm’s Cf/A is positive, the indicator variable FCf/A equals one and 

zero otherwise. (3) droa is the current quarter’s roa minus the roa from four quarters ago. If droa 

is positive, the indicator variable Fdroa equals one and zero otherwise. (4) the indicator FAcc equals 

one if Cf/A > roa and zero otherwise. 

We use two variables to measure changes in capital structure and a firm’s ability to meet debt 

obligations. (1) dlever is the change in the ratio of total long-term debt to the average of current 

and one-quarter-lagged total assets. FdLever equals one if the firm’s leverage ratio falls (dlever<0) 

and zero otherwise. (2) dliquid measures the change in the current ratio from four quarters ago, in 

which the current ratio is the ratio of current assets to current liabilities. An improvement in 

liquidity (dliquid>0) is a good signal about the firm’s ability to service debt obligations. The 

indicator Fdliquid equals one if the firm’s liquidity improves and zero otherwise.  

The remaining two signals are designed to measure changes in the efficiency of the firm’s 

operations that reflect two key constructs underlying the decomposition of return on assets. (1) 

dmargin is the current gross margin ratio, measured as gross margin scaled by sales, minus gross 

margin ratio four quarters ago. An improvement in margins signifies a potential improvement in 

factor costs, a reduction in inventory costs, or a rise in the price of the firm’s product. The indictor 

Fdmargin equals one if dmargin>0 and zero otherwise. (2) dturn is the current year’s asset turnover 

ratio, measured as total sales scaled by one-quarter-lagged total assets, minus the asset turnover 

ratio four quarters ago. An improvement in asset turnover ratio signifies greater productivity from 

the asset base. The indicator, Fdturn, equals one if dturn>0 and zero otherwise. The composite score 

(Fq) is the sum of the individual binary variables: 

𝐹𝑞 = 𝐹𝑟𝑜𝑎 + 𝐹𝑑𝑟𝑜𝑎 + 𝐹𝐶𝑓/𝐴 + 𝐹𝐴𝑐𝑐 + 𝐹𝑑𝑚𝑎𝑟𝑔𝑖𝑛 + 𝐹𝑑𝑡𝑢𝑟𝑛 + 𝐹𝑑𝑙𝑒𝑣𝑒𝑟 + 𝐹𝑑𝑙𝑖𝑞𝑢𝑖𝑑.   (B14) 

At the beginning of each month t, we sort stocks based on their most recently available Fq. 

We form six portfolios: low (F = 0, 1, 2), 3, 4, 5, 6, and high (F = 7, 8). Because extreme F scores 

are rare, we combine scores 0, 1, and 2 into the low portfolio and scores 7 and 8 into the high 

portfolio. We then calculate monthly decile portfolio returns over months [t, t+n-1] (n=1, 6, and 

12, corresponding to Fq1, Fq6, and Fq12, respectively). 

B.2.1.28 Ohlson’s O-score (O)  We follow Ohlson (1980) to construct the O-score (O): 

𝑂 = −1.32 − 0.407 𝑙𝑜𝑔(𝑇𝐴) + 6.03𝑇𝐿𝑇𝐴 − 1.43𝑊𝐶𝑇𝐴 + 0.076𝐶𝐿𝐶𝐴 − 1.72𝑂𝐸𝑁𝐸𝐺 −
2.37𝑁𝐼𝑇𝐴 − 1.83𝐹𝑈𝑇𝐿 + 0.285𝐼𝑁2 − 0.521𝐶𝐻𝐼𝑁,                     (B15) 

in which TA is total assets, TLTA is the leverage ratio defined as total debt divided by total assets, 

WCTA is working capital, measured as current assets minus current liabilities divided by total 

assets, CLCA is current liabilities divided by current assets, OENEG equals one if total liabilities 

exceed total assets and zero otherwise, NITA is net income divided by total assets, FUTL is the 

fund provided by operations divided by total liabilities, IN2 equals one if net income is negative 

for the last two years and zero otherwise, CHIN is (NIs−NIs−1)/(|NIs |+|NIs−1|), in which NIs and 

NIs−1 are net income for the current and prior years. We winsorize all nondummy variables on the 

right-hand side of Equation (B15) at the 1st and 99th percentiles of their distributions each year. At 

the end of June of each year t, we sort stocks into deciles based on the O-score for the fiscal year 

ending in year t-1 and calculate monthly decile portfolio returns from July of year t to June of t+1. 

B.2.1.29 Quarterly O-score (Oq1, Oq6, and Oq12)  We use quarterly accounting data to 

construct the quarterly O-score (Oq) as: 
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𝑂𝑞 = −1.32 − 0.407 𝑙𝑜𝑔(𝑇𝐴) + 6.03𝑇𝐿𝑇𝐴 − 1.43𝑊𝐶𝑇𝐴 + 0.076𝐶𝐿𝐶𝐴 − 1.72𝑂𝐸𝑁𝐸𝐺 −
2.37𝑁𝐼𝑇𝐴 − 1.83𝐹𝑈𝑇𝐿 + 0.285𝐼𝑁2 − 0.521𝐶𝐻𝐼𝑁,                     (B16) 

in which TA is total assets, TLTA denotes the leverage ratio defined as total debt divided by total 

assets, WCTA is working capital, measured as current assets minus current liabilities divided by 

total assets, CLCA is current liabilities divided by current assets, OENEG equals one if total 

liabilities exceed total assets and zero otherwise, NITA is net income divided by total assets, FUTL 

is the fund provided by operations divided by total liabilities, IN2 equals one if net income is 

negative for the current quarter and four quarters ago, and zero otherwise, CHIN is 

(NIs−NIs−4)/(|NIs |+|NIs−4|), in which NIs and NIs−4 are the net income for the current quarter and 

four quarters ago. We winsorize all nondummy variables on the right-hand side of Equation (B16) 

at the 1st and 99th percentiles of their distributions each month. At the beginning of each month t, 

we sort stocks into deciles based on their most recently released Oq and calculate monthly decile 

portfolio returns over months [t, t+n-1] (n=1, 6, and 12, corresponding to Oq1, Oq6, and Oq12, 

respectively). 

B.2.1.30 Altman’s Z-score (Z)  We follow Altman (1968) to construct the Z-score (Z): 

𝑍 = 1.2𝑊𝐶𝑇𝐴 + 1.4𝑅𝐸𝑇𝐴 + 3.3𝐸𝐵𝐼𝑇𝑇𝐴 + 0.6𝑀𝐸𝑇𝐿 + 𝑆𝐴𝐿𝐸𝑇𝐴,      (B17) 

in which WCTA is working capital divided by total assets, RETA is retained earnings divided by 

total assets, EBITTA is earnings before interest and taxes divided by total assets, METL is market 

equity at fiscal year-end divided by total liabilities, and SALETA is sales divided by total assets. 

We winsorize all nondummy variables on the right-hand side of Equation (B17) at the 1st and 99th 

percentiles of their distributions each year. At the end of June of each year t, we sort stocks into 

deciles based on Z for the fiscal year ending in calendar year t-1 and calculate monthly decile 

portfolio returns from July of year t to June of t+1. 

B.2.1.31 Quarterly Z-score (Zq1, Zq6, and Zq12)  We use quarterly accounting data to 

construct the quarterly Z-score (Zq) as: 

𝑍𝑞 = 1.2𝑊𝐶𝑇𝐴 + 1.4𝑅𝐸𝑇𝐴 + 3.3𝐸𝐵𝐼𝑇𝑇𝐴 + 0.6𝑀𝐸𝑇𝐿 + 𝑆𝐴𝐿𝐸𝑇𝐴,      (B18) 

in which WCTA is working capital divided by total assets, RETA is retained earnings divided by 

total assets, EBITTA is earnings before interest and taxes divided by total assets, METL is market 

equity at fiscal quarter end divided by total liabilities, and SALETA is sales divided by total assets. 

We winsorize all nondummy variables on the right-hand side of Equation (B18) at the 1st and 99th 

percentiles of their distributions each month. At the beginning of each month t, we sort stocks into 

deciles based on their most recently released Zq and calculate monthly decile portfolio returns over 

months [t, t+n-1] (n=1, 6, and 12, corresponding to Zq1, Zq6, and Zq12, respectively). 

 

B.2.2 Value 

B.2.2.1 Book-to-Market Equity (bm)  Following Fama and French (1992), we estimate 

book-to-market equity (bm) as total shareholders’ equity minus the book value of preferred stocks 

(zero if missing) for the fiscal year ending in calendar year t-1 divided by the market equity at the 

end of December of year t-1. Market equity is calculated as the closing price (unadjusted) 

multiplied by the number of total A-shares outstanding. At the end of June of each year t, we sort 

stocks into deciles based on bm for the fiscal year ending in calendar year t-1 and calculate monthly 

decile portfolio returns from July of year t to June of t+1. 

B.2.2.2 Book-to-June-end Market Equity (bmj)  Following Asness and Frazzini (2013), 

we estimate book-to-June-end market equity (bmj) as total shareholders’ equity minus the book 

value of preferred stocks (zero if missing) for the fiscal year ending in calendar year t-1 divided 

by the market equity at the end of June of year t. Market equity is calculated as the closing price 



16 
 

(unadjusted) multiplied by the number of total A-shares outstanding. At the end of June of each 

year t, we sort stocks into deciles based on bmj for the fiscal year ending in calendar year t-1 and 

calculate monthly decile portfolio returns from July of year t to June of t+1. 

B.2.2.3 Quarterly Book-to-Market Equity (bmq1, bmq6, and bmq12)  At the beginning 

of each month t, we sort stocks into deciles based on quarterly book-to-market equity (bmq) 

estimated as total shareholders’ equity minus the book value of preferred stocks (zero if missing) 

for the most recently released quarter divided by the market equity at the end of month t-1. We 

then calculate monthly decile portfolio returns over months [t, t+n-1] (n=1, 6, and 12, 

corresponding to bmq1, bmq6, and bmq12, respectively). 

B.2.2.4 Debt-to-Market Equity (dm)  At the end of June of each year t, we sort stocks into 

deciles based on debt-to-market equity (dm) estimated as total liabilities for the fiscal year ending 

in calendar year t-1 divided by the market equity at the end of December of year t-1. We then 

calculate monthly decile portfolio returns from July of year t to June of t+1. 

B.2.2.5 Quarterly Debt-to-Market Equity (dmq1, dmq6, and dmq12)  At the beginning 

of each month t, we sort stocks into deciles based on quarterly debt-to-market equity (dmq) 

estimated as total liabilities for the most recently released quarter divided by the market equity at 

the end of month t-1. We then calculate monthly decile portfolio returns over months [t, t+n-1] 

(n=1, 6, and 12, corresponding to dmq1, dmq6, and dmq12, respectively). 

B.2.2.6 Assets-to-Market Equity (am)  At the end of June of each year t, we sort stocks into 

deciles based on assets-to-market equity (am) estimated as total assets for the fiscal year ending in 

calendar year t-1 divided by the market equity at the end of December of year t-1. We then calculate 

monthly decile portfolio returns from July of year t to June of t+1. 

B.2.2.7 Quarterly Assets-to-Market Equity (amq1, amq6, and amq12)  At the beginning 

of each month t, we sort stocks into deciles based on quarterly assets-to-market equity (amq) 

estimated as total assets for the most recently released quarter divided by the market equity at the 

end of month t-1. We then calculate monthly decile portfolio returns over months [t, t+n-1] (n=1, 

6, and 12, corresponding to amq1, amq6, and amq12, respectively). 

B.2.2.8 Earnings-to-Price (ep)  At the end of June of each year t, we sort stocks into deciles 

based on earnings-to-price (ep) measured as income minus nonrecurrent gains/losses for the fiscal 

year ending in calendar year t-1 divided by the market equity at the end of December of year t-1. 

We then calculate monthly decile portfolio returns from July of year t to June of t+1. 

B.2.2.9 Quarterly Earnings-to-Price (epq1, epq6, and epq12)  At the beginning of each 

month t, we sort stocks into deciles based on quarterly earnings-to-price (epq) estimated as  

income minus nonrecurrent gains/losses for the most recently released quarter divided by the 

market equity at the end of month t-1. We then calculate monthly decile portfolio returns over 

months [t, t+n-1] (n=1, 6, and 12, corresponding to epq1, epq6, and epq12, respectively). 

B.2.2.10 Cash Flow-to-Price (cfp)  At the end of June of each year t, we sort stocks into 

deciles based on cash flow-to-price (cfp) estimated as the net change in cash or cash equivalents 

between two most recent cash flow statements for the fiscal year ending in calendar year t-1 

divided by the market equity at the end of December of year t-1. We then calculate monthly decile 

portfolio returns from July of year t to June of t+1. 

B.2.2.11 Quarterly Cash Flow-to-Price (cfpq1, cfpq6, and cfpq12)  At the beginning of 

each month t, we sort stocks into deciles based on quarterly cash flow-to-price (cfpq) estimated as 

the net change in cash or cash equivalents between two most recent cash flow statements for the 

most recently released quarter divided by the market equity at the end of month t-1. We then 

calculate monthly decile portfolio returns over months [t, t+n-1] (n=1, 6, and 12, corresponding to 
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cfpq1, cfpq6, and cfpq12, respectively). 

B.2.2.12 5-year Sales Growth Rank (sr)  Following Lakonishok, Shleifer, and Vishny 

(1994), we measure the five-year sales growth rank (sr) at the end of June of year t as the weighted 

average of the annual sales growth ranks for the prior five years: ∑ (6 − 𝑗) × 𝑅𝑎𝑛𝑘(𝑡 − 𝑗)5
𝑗=1 . The 

sales growth for year t−j is the growth rate in sales from the fiscal year ending in t−j−1 to the 

fiscal year ending in t−j. Only firms with data for all the prior five years are used to determine the 

annual sales growth rank, and we exclude firms with nonpositive sales. At the end of June of each 

year t, we sort stocks into deciles based on sr for the fiscal year ending in calendar year t-1 and 

calculate monthly decile portfolio returns from July of year t to June of t+1. 

B.2.2.13 Enterprise Multiple (em)  Following Loughran and Wellman (2011), we estimate 

enterprise multiple (em) as enterprise value divided by operating income before depreciation. 

Enterprise value is calculated as market equity plus total debt plus the book value of preferred 

stocks (zero if missing) minus cash and short-term investments. At the end of June of each year t, 

we sort stocks into deciles based on em for the fiscal year ending in year t-1 and calculate monthly 

decile portfolio returns from July of year t to June of t+1. 

B.2.2.14 Quarterly Enterprise Multiple (emq1, emq6, and emq12)  We estimate quarterly 

enterprise multiple (emq) as enterprise value divided by operating income before depreciation. 

Enterprise value is calculated as market equity plus total debt plus the book value of preferred 

stocks (zero if missing) minus cash and short-term investments. At the beginning of each month t, 

we sort stocks into deciles based on the most recently released emq and calculate monthly decile 

portfolio returns over months [t, t+n-1] (n=1, 6, and 12, corresponding to emq1, emq6, and emq12, 

respectively). 

B.2.2.15 Sales-to-Price (sp)  At the end of June of each year t, we sort stocks into deciles 

based on sales-to-price (sp), which is calculated as operating revenue for the fiscal year ending in 

calendar year t-1 divided by the market equity at the end of December of year t-1. We then calculate 

monthly decile portfolio returns from July of year t to June of t+1. 

B.2.2.16 Quarterly Sales-to-Price (spq1, spq6, and spq12)  At the beginning of each 

month t, we sort stocks into deciles based on quarterly sales-to-price (spq), which is calculated as 

quarterly operating revenue for the most recently released quarter divided by the market equity at 

the end of month t-1. We then calculate monthly decile portfolio returns over months [t, t+n-1] 

(n=1, 6, and 12, corresponding to spq1, spq6, and spq12, respectively). 

B.2.2.17 Operating Cash Flow-to-Price (ocfp)  At the end of June of each year t, we sort 

stocks into deciles based on operating cash flow-to-price (ocfp), which is calculated as operating 

cash flows for the fiscal year ending in calendar year t-1 divided by the market equity at the end 

of December of year t-1. We then calculate monthly decile portfolio returns from July of year t to 

June of t+1. 

B.2.2.18 Quarterly Operating Cash Flow-to-Price (ocfpq1, ocfpq6, and ocfpq12)  At the 

beginning of each month t, we sort stocks into deciles based on quarterly operating cash flow-to-

price (ocfpq), which is calculated as operating cash flows for the most recently released quarter 

divided by the market equity at the end of month t-1. We then calculate monthly decile portfolio 

returns over months [t, t+n-1] (n=1, 6, and 12, corresponding to ocfpq1, ocfpq6, and ocfpq12, 

respectively). 

B.2.2.19 Debt-to-Book Equity (de)  At the end of June of each year t, we sort stocks into 

deciles based on debt-to-book equity (de) estimated as total liabilities for the fiscal year ending in 

calendar year t-1 divided by total shareholders’ equity minus the book value of preferred stocks 

(zero if missing) for the fiscal year ending in calendar year t-1. We then calculate monthly decile 
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portfolio returns from July of year t to June of t+1. 

B.2.2.20 Intangible Return (ir)  Following Daniel and Titman (2006), at the end of June of 

each year t, we compute intangible return (ir) as the residuals from estimating the cross-sectional 

regression of each firm’s past five-year stock returns on its five-year-lagged log book-to-market 

and five-year log book returns: 

𝑟(𝑡 − 5, 𝑡) = 𝛾0 + 𝛾1𝑏𝑚𝑡−5 + 𝛾2𝑟𝐵(𝑡 − 5, 𝑡) + 𝜇𝑡,            (B19) 

in which 𝑟(𝑡 − 5, 𝑡) is the past five-year log stock returns from the end of year t-6 to the end of 

t-1, 𝑏𝑚𝑡−5  is the five-year-lagged log book-to-market, and 𝑟𝐵(𝑡 − 5, 𝑡)  is the five-year log 

book returns. The five-year-lagged log book-to-market is calculated as 𝑏𝑚𝑡−5 = 𝑙𝑜𝑔 (
𝐵𝑡−5

𝑀𝑡−5
), in 

which 𝐵𝑡−5 is the book equity for the fiscal year ending in calendar year t-6, and 𝑀𝑡−5 is the 

market equity at the end of December of year t-6. We compute the five-year log book returns as 

𝑟𝐵(𝑡 − 5, 𝑡) = 𝑙𝑜𝑔 (
𝐵𝑡

𝐵𝑡−5
) + ∑ (𝑟𝑠 − 𝑙𝑜𝑔 (

𝑃𝑠

𝑃𝑠−1
)𝑡−1

𝑠=𝑡−5 ), in which 𝐵𝑡 is the book equity for the fiscal 

year ending in calendar year t-1, 𝑟𝑠 is the stock return from the end of year s-1 to the end of year 

s, and 𝑃𝑠 is the stock price per share at the end of year s. Book equity is total shareholders’ equity 

minus the book value of preferred stocks (zero if missing). At the end of June of each year t, we 

sort stocks into deciles based on ir for the fiscal year ending in calendar year t-1 and calculate 

monthly decile portfolio returns from July of year t to June of t+1. 

B.2.2.21 Enterprise Book-to-Price (ebp) and Net Debt-to-Price (ndp)  Following Penman, 

Richardson, and Tuna (2007), we measure enterprise book-to-price (ebp) as the ratio of the book 

value of net operating assets (net debt plus book equity) to the market value of net operating assets 

(net debt plus market equity). Net debt-to-price (ndp) is the ratio of net debt to market equity. Net 

debt is calculated as financial liabilities minus financial assets. Financial liabilities are measured 

as the sum of long-term debt, debt in current liabilities, and the carrying value of preferred stocks 

(zero if missing). Financial assets are measured as cash and short-term investments. At the end of 

June of each year t, we sort stocks into deciles based on ebp and ndp for the fiscal year ending in 

calendar year t-1 and calculate monthly decile portfolio returns from July of year t to June of t+1. 

B.2.2.22 Quarterly Enterprise Book-to-Price (ebpq1, ebpq6, and ebpq12) and Quarterly 

Net Debt-to-Price (ndpq1, ndpq6, and ndpq12)  We measure quarterly enterprise book-to-

price (ebpq) as the ratio of the book value of net operating assets (net debt plus book equity) to the 

market value of net operating assets (net debt plus market equity). Quarterly net debt-to-price 

(ndpq) is the ratio of net debt to market equity. Net debt is calculated as financial liabilities minus 

financial assets. Financial liabilities are measured as the sum of long-term debt, debt in current 

liabilities, and the carrying value of preferred stocks (zero if missing). Financial assets are 

measured as cash and short-term investments. At the beginning of each month t, we sort stocks 

into deciles based on their most recently released ebpq and ndpq. The market equity is measured 

at the end of month t-1. We exclude firms with nonpositive book or market value of net operating 

assets. For the ndpq portfolios, we exclude firms with nonpositive net debt. We then calculate 

monthly decile portfolio returns over months [t, t+n-1] (n=1, 6, and 12, corresponding to ebpq1, 

ebpq6, ebpq12, ndpq1, ndpq6, and ndpq12, respectively). 

 

B.2.3 Investment  

B.2.3.1 Abnormal Corporate Investment (aci)  At the end of June of year t, we measure 

abnormal corporate investment (aci) as 
𝐶𝑒𝑡−1

[
𝐶𝑒𝑡−2+𝐶𝑒𝑡−3+𝐶𝑒𝑡−4

3
]

− 1 , in which 𝐶𝑒𝑡−𝑗  is capital 

expenditure scaled by sales for the fiscal year ending in calendar year t-j. We exclude firms with 
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negative sales. We measure capital expenditure as cash flows paid out for purchasing fixed assets, 

intangible assets, and other long-term investment. At the end of June of each year t, we sort stocks 

into deciles based on aci for the fiscal year ending in year t-1 and calculate monthly decile portfolio 

returns from July of year t to June of t+1. 

B.2.3.2 Investment-to-Assets (ag)  At the end of June of each year t, we sort stocks into 

deciles based on investment-to-assets (ag), which is estimated as total assets from the fiscal year 

ending in calendar year t-1 divided by total assets for the fiscal year ending in calendar year t-2 

minus one. We then calculate monthly decile portfolio returns from July of year t to June of t+1. 

B.2.3.3 Quarterly Investment-to-Assets (agq1, agq6, and agq12)  We measure quarterly 

investment-to-assets (agq) as quarterly total assets divided by four-quarter-lagged total assets 

minus one. At the beginning of each month t, we sort stocks into deciles based on their most 

recently released agq and calculate monthly decile portfolio returns over months [t, t+n-1] (n=1, 

6, and 12, corresponding to agq1, agq6, and agq12, respectively). 

B.2.3.4 Changes in PPE and Inventory-to-Assets (dpia)  We define changes in PPE and 

inventory-to-assets (dpia) as the annual change in gross property, plant, and equipment (fixed 

assets) plus the annual change in inventory, scaled by one-year-lagged total assets. At the end of 

June of each year t, we sort stocks into deciles based on dpia for the fiscal year ending in calendar 

year t-1 and calculate monthly decile portfolio returns from July of year t to June of t+1. 

B.2.3.5 Net Operating Assets (noa) and Changes in Net Operating Assets (dnoa)  We 

measure net operating assets as operating assets minus operating liabilities. Operating assets are 

total assets minus cash and short-term investments. Operating liabilities are total assets minus debt 

included in current liabilities (zero if missing), minus long-term debt (zero if missing), minus 

minority interests, minus the book value of preferred stocks (zero if missing), and minus common 

equity. noa is net operating assets scaled by one-year-lagged total assets. Changes in net operating 

assets (dnoa) is the annual change in net operating assets scaled by one-year-lagged total assets. 

At the end of June of each year t, we sort stocks into deciles based on noa and dnoa for the fiscal 

year ending in calendar year t-1 and calculate monthly decile portfolio returns from July of year t 

to June of t+1. 

B.2.3.6 x-year Investment Growth (ig, ig2, and ig3)  At the end of June of each year t, we 

sort stocks into deciles based on x-year investment growth, which is the growth rate in capital 

expenditure from the fiscal year ending in calendar year t-x-1 to the fiscal year ending in year t-1 

(x=1, 2, 3, corresponding to ig, ig2, and ig3, respectively). We then calculate monthly decile 

portfolio returns from July of year t to June of t+1. 

B.2.3.7 Net Stock Issues (nsi)  At the end of June of each year t, we sort stocks into deciles 

based on net stock issues (nsi) measured as the natural logarithm of the ratio of the split-adjusted 

total A-shares outstanding for the fiscal year ending in calendar year t-1 to the split-adjusted total 

A-shares outstanding for the fiscal year ending in calendar year t-2. We then calculate monthly 

decile portfolio returns from July of year t to June of t+1. 

B.2.3.8 Composite Equity Issuance (cei)  At the end of June of each year t, we sort stocks 

into deciles based on composite equity issuance (cei), which is the log growth rate in the market 

equity not attributed to stock returns from year t-5 to t. That is calculated as 𝑐𝑒𝑖 = 𝑙𝑜𝑔 (
𝑀𝐸𝑡

𝑀𝐸𝑡−5
) −

𝑟(𝑡 − 5, 𝑡), where 𝑟(𝑡 − 5, 𝑡) is the cumulative log stock returns from the last trading day of June 

in year t-5 to the last trading day of June in year t, and 𝑀𝐸𝑡 and 𝑀𝐸𝑡−5 are the market equity on 

the last trading day of June in year t and year t-5, respectively. We then calculate monthly decile 

portfolio returns from July of year t to June of t+1. 

B.2.3.9 Composite Debt Issuance (cdi)  At the end of June of each year t, we sort stocks 
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into deciles based on composite debt issuance (cdi), which is the log growth rate of total liabilities 

from the fiscal year ending in year t-6 to the fiscal year ending in year t-1. We then calculate 

monthly decile portfolio returns from July of year t to June of t+1. 

B.2.3.10 Inventory Growth (ivg)  At the end of June of each year t, we sort stocks into 

deciles based on inventory growth (ivg), which is the annual growth rate in inventory from the 

fiscal year ending in year t-2 to the fiscal year ending in year t-1. We then calculate monthly decile 

portfolio returns from July of year t to June of t+1. 

B.2.3.11 Inventory Changes (ivchg)  At the end of June of each year t, we sort stocks into 

deciles based on inventory changes (ivchg), which is the annual change in inventory from the fiscal 

year ending in year t-2 to t-1 scaled by the average of total assets for the fiscal years ending in 

calendar years t-2 and t-1. We then calculate monthly decile portfolio returns from July of year t 

to June of t+1. 

B.2.3.12 Operating Accruals (oa)  Following Hribar and Collins (2002), we measure 

operating accruals (oa) as net profits minus operating cash flows scaled by one-year-lagged total 

assets. At the end of June of each year t, we sort stocks into deciles based on oa for the fiscal year 

ending in year t-1 and calculate monthly decile portfolio returns from July of year t to June of t+1. 

B.2.3.13 Total Accruals (ta)  We measure total accruals (ta) as net income minus cash flows 

scaled by one-year-lagged total assets. At the end of June of each year t, we sort stocks into deciles 

based on ta for the fiscal year ending in year t-1 and calculate monthly decile portfolio returns 

from July of year t to June of t+1. 

B.2.3.14 Changes in Net Noncash Working Capital (dwc), Current Operating Assets 

(dcoa), and Current Operating Liabilities (dcol)  Net noncash working capital (wc) is 

calculated as current operating assets (coa) minus current operating liabilities (col). Current 

operating assets (coa) are current assets minus cash and short-term investments. Current operating 

liabilities (col) are current liabilities minus debt in current liabilities (zero if missing). At the end 

of June of each year t, we sort stocks into deciles based on changes in wc, coa, and col (dwc, dcoa, 

and dcol) from the fiscal year ending in calendar year t-2 to the fiscal year ending in calendar year 

t-1 scaled by total assets for the fiscal year ending in calendar year t-2. We then calculate monthly 

decile portfolio returns from July of year t to June of t+1. 

B.2.3.15 Changes in Net Noncurrent Operating Assets (dnco), Noncurrent Operating 

Assets (dnca), and Noncurrent Operating Liabilities (dncl)  Net noncurrent operating assets 

(nco) are calculated as noncurrent operating assets minus noncurrent operating liabilities. 

Noncurrent operating assets (nca) are total assets minus current assets, minus long-term 

investments (zero if missing). Long-term investments are measured as the sum of held-to-maturity 

investments, long-term equity investments, investment in real estate, and fixed deposit. Noncurrent 

operating liabilities (ncl) are total liabilities minus current liabilities, and minus long-term debt 

(zero if missing). At the end of June of each year t, we sort stocks into deciles based on changes in 

nco, nca, and ncl (dnco, dnca, and dcl) from the fiscal year ending in calendar year t-2 to the fiscal 

year ending in calendar year t-1 scaled by total assets for the fiscal year ending in calendar year t-

2. We then calculate monthly decile portfolio returns from July of year t to June of t+1. 

B.2.3.16 Changes in Net Financial Assets (dfin), Short-Term Investments (dsti), Long-

Term Investments (dlti), Financial Liabilities (dfnl), and Book Equity (dbe)  Net financial 

assets are calculated as financial assets minus financial liabilities. We measure financial assets as 

short-term investments plus long-term investments (zero if missing). Long-term investments are 

measured as the sum of held-to-maturity investments, long-term equity investments, investment in 

real estate, and fixed deposit. Financial liabilities are the sum of long-term debt (zero if missing), 
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debt in current liabilities (zero if missing), and the book value of preferred stocks (zero if missing). 

At the end of June of year t, we measure dfin, dsti, dlti, and dfnl as the annual change in net 

financial assets, short-term investments, long-term investments, and financial liabilities from the 

fiscal year ending in calendar year t-2 to the fiscal year ending in calendar year t-1 scaled by total 

assets for the fiscal year ending in calendar year t-2. We measure dbe as the change in book equity 

for the fiscal year ending in calendar year t-1 scaled by total assets for the fiscal year ending in 

calendar year t-2. At the end of June of each year t, we sort stocks into deciles based on dfin, dsti, 

dlti, dfnl, and dbe for the fiscal year ending in calendar year t-1 and calculate monthly decile 

portfolio returns from July of year t to June of t+1. 

B.2.3.17 Discretionary Accruals (dac)  We measure discretionary accruals (dac) using the 

following model: 
𝑜𝑎𝑖,𝑡

𝐴𝑖,𝑡−1
= 𝛼1

1

𝐴𝑖,𝑡−1
+ 𝛼2

𝑑𝑆𝐴𝐿𝐸𝑖,𝑡−𝑑𝑅𝐸𝐶𝑖,𝑡

𝐴𝑖,𝑡−1
+ 𝛼3

𝑃𝑃𝐸𝑖,𝑡

𝐴𝑖,𝑡−1
+ 𝑒𝑖,𝑡,           (B20) 

in which 𝑜𝑎𝑖,𝑡 represents operating accruals for firm i, 𝐴𝑖,𝑡−1 is total assets at the end of year t-

1, 𝑑𝑆𝐴𝐿𝐸𝑖,𝑡 is the annual change in sales from year t-1 to t, 𝑑𝑅𝐸𝐶𝑖,𝑡 is the annual change in net 

accounts receivable from year t-1 to t, and 𝑃𝑃𝐸𝑖,𝑡 is gross property, plant, and equipment (fixed 

assets) at the end of year t. We winsorize the variables on the right-hand side of Equation (B20) at 

the 1st and 99th percentiles of their distributions each year. We estimate the cross-sectional 

regression (B20) for each Shenwanhongyuan industry each year and require at least six firms for 

each regression. The discretionary accruals for stock i are defined as the residual from the 

regression, 𝑒𝑖,𝑡. At the end of June of each year t, we sort stocks into deciles based on dac for the 

fiscal year ending in calendar year t-1 and calculate monthly decile portfolio returns from July of 

year t to June of t+1. 

B.2.3.18 Percent Operating Accruals (poa)  At the end of June of each year t, we sort stocks 

into deciles based on percent operating accruals (poa) measured as operating accruals for the fiscal 

year ending in calendar year t-1 divided by the absolute value of net income for the fiscal year 

ending in calendar year t-1. We then calculate monthly decile portfolio returns from July of year t 

to June of t+1. 

B.2.3.19 Percent Total Accruals (pta)  At the end of June of each year t, we sort stocks into 

deciles based on percent total accruals (pta) measured as total accruals divided by the absolute 

value of net income for the fiscal year ending in calendar year t-1. We then calculate monthly 

decile portfolio returns from July of year t to June of t+1. 

B.2.3.20 Percent Discretionary Accruals (pda)  At the end of June of each year t, we sort 

stocks into deciles based on percent discretionary accruals (pda) measured as the discretionary 

accruals for the fiscal year ending in calendar year t-1 multiplied by total assets for the fiscal year 

ending in calendar year t-2, and then scaled by the absolute value of net income for the fiscal year 

ending in calendar year t-1. We then calculate monthly decile portfolio returns from July of year t 

to June of t+1. 

B.2.3.21 Quarterly Current Asset Growth (cagq1, cagq6, and cagq12) and Noncurrent 

Asset Growth (ncagq1, ncagq6, and ncagq12)  Total assets are the sum of current assets and 

noncurrent assets, so total asset growth can be decomposed into current asset growth and 

noncurrent asset growth. We measure quarterly current asset growth (cagq) as quarterly current 

assets minus four-quarter-lagged current assets, divided by four-quarter-lagged total assets. We 

measure quarterly noncurrent asset growth (ncagq) as quarterly noncurrent assets minus four-

quarter-lagged noncurrent assets, divided by four-quarter-lagged total assets. At the beginning of 

each month t, we sort stocks into deciles based on their most recently released cagq and ncagq, 
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and calculate monthly decile portfolio returns over months [t, t+n-1] (n=1, 6, and 12, 

corresponding to cagq1, cagq6, cagq12, ncagq1, ncagq6, and ncagq12, respectively). 

B.2.3.22 Quarterly Cash Growth (cashgq1, cashgq6, and cashgq12), Fixed Asset Growth 

(fagq1, fagq6, and fagq12), Noncash Current Asset Growth (nccgq1, nccgq6, and nccgq12), 

and Other Asset Growth (oagq1, oagq6, and oagq12)  According to Cooper, Gulen, and Schill 

(2008), asset growth can be decomposed as follows: Total asset growth = cash growth + noncash 

current asset growth + property, plant, and equipment growth + other asset growth. We measure 

quarterly cash growth (cashgq) as quarterly cash minus four-quarter-lagged cash, divided by total 

assets four quarters ago. We measure quarterly noncash current asset growth (nccagq) as the annual 

change in quarterly current assets minus cash, divided by four-quarter-lagged total assets. We 

measure quarterly property, plant, and equipment growth (fagq) as quarterly fixed assets minus 

four-quarter-lagged fixed assets, divided by total assets four quarters ago. We measure quarterly 

other asset growth (oagq) as the annual change in quarterly other assets, divided by four-quarter-

lagged total assets. Other assets are equal to noncurrent assets minus fixed assets. At the beginning 

of each month t, we sort stocks into deciles based on their most recently released cashgq, fagq, 

nccgq, and oagq, and calculate monthly decile portfolio returns over months [t, t+n-1] (n=1, 6, and 

12, corresponding to cashgq1, cashgq6, cashgq12, fagq1, fagq6, fagq12, nccgq1, nccgq6, nccgq12, 

oagq1, oagq6, and oagq12, respectively). 

 

B.2.4 Others 

B.2.4.1Advertising Expense-to-Market (adm)  At the end of June of each year t, we sort 

stocks into deciles based on advertising expense-to-market (adm), measured as advertising (selling) 

expense for the fiscal year ending in calendar year t-1 divided by the market equity at the end of 

December of t-1. We then calculate monthly decile portfolio returns from July of year t to June of 

t+1. 

B.2.4.2 Growth in Advertising Expense (gad)  At the end of June of each year t, we sort 

stocks into deciles based on growth in advertising expense (gad), which is the growth rate of 

advertising (selling) expense from the fiscal year ending in calendar year t-2 to the fiscal year 

ending in calendar year t-1. We then calculate monthly decile portfolio returns from July of year t 

to June of t+1. 

B.2.4.3 R&D Expense-to-Market (rdm)  At the end of June of each year t, we sort stocks 

into deciles based on R&D expense-to-market (rdm), measured as R&D (administrative) expense 

for the fiscal year ending in calendar year t-1 divided by the market equity at the end of December 

of t-1. We only keep firms with positive R&D expense. We then calculate monthly decile portfolio 

returns from July of year t to June of t+1. 

B.2.4.4 Quarterly R&D Expense-to-Market (rdmq1, rdmq6, and rdmq12)  At the 

beginning of each month t, we sort stocks into deciles based on quarterly R&D expense-to-market 

(rdmq), measured as the most recently released quarterly R&D (administrative) expense divided 

by the market equity at the end of month t-1. We only keep firms with positive R&D expense. We 

then calculate monthly decile portfolio returns over months [t, t+n-1] (n=1, 6, and 12, 

corresponding to rdmq1, rdmq6, and rdmq12, respectively). 

B.2.4.5 R&D Expense-to-Sales (rds)  At the end of June of each year t, we sort stocks into 

deciles based on R&D expense-to-sales (rds), which is R&D (administrative) expense for the fiscal 

year ending in calendar year t-1 divided by sales for the fiscal year ending in calendar year t-1. We 

only keep firms with positive R&D expense. We then calculate monthly decile portfolio returns 

from July of year t to June of t+1. 
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B.2.4.6 Quarterly R&D Expense-to-Sales (rdsq1, rdsq6, and rdsq12)  We measure 

quarterly R&D expense-to-sales (rdsq) as quarterly R&D (administrative) expense divided by 

quarterly sales. We only keep firms with positive R&D expense. At the beginning of each month 

t, we sort stocks into deciles based on their most recently released rdsq and calculate monthly 

decile portfolio returns over months [t, t+n-1] (n=1, 6, and 12, corresponding to rdsq1, rdsq6, and 

rdsq12, respectively). 

B.2.4.7 Operating Leverage (ol)  Following Novy-Marx (2011), we estimate operating 

leverage (ol) as operating costs divided by total assets. At the end of June of each year t, we sort 

stocks into deciles based on ol for the fiscal year ending in calendar year t-1 and calculate monthly 

decile portfolio returns from July of year t to June of t+1. 

B.2.4.8 Quarterly Operating Leverage (olq1, olq6, and olq12)  We measure quarterly 

operating leverage (olq) as quarterly operating costs divided by total assets. At the beginning of 

each month t, we sort stocks into deciles based on their most recently released olq and calculate 

monthly decile portfolio returns over months [t, t+n-1] (n=1, 6, and 12, corresponding to olq1, 

olq6, and olq12, respectively). 

B.2.4.9 Hiring Rate (hn)  At the end of June of each year t, we sort stocks into deciles based 

on the hiring rate (hn), measured as (𝑁𝑡−1 − 𝑁𝑡−2)/(0.5𝑁𝑡−1 + 0.5𝑁𝑡−2), in which 𝑁𝑡−𝑗 is the 

number of employees for the fiscal year ending in calendar year t-j. We exclude firms with zero 

hn. We then calculate monthly decile portfolio returns from July of year t to June of t+1. 

B.2.4.10 Firm Age (age1, age6, and age12)  Following Jiang, Lee, and Zhang (2005), we 

compute firm age (age) as the number of months between the portfolio formation date and the 

firm’s IPO date. At the beginning of each month t, we sort stocks into deciles based on age at the 

end of month t-1 and calculate monthly decile portfolio returns over months [t, t+n-1] (n=1, 6, and 

12, corresponding to age1, age6, and age12, respectively). 

B.2.4.11 % Change in Sales minus % Change in Inventory (dsi)  Following Abarbanell 

and Bushee (1998), we define the %d(.) operator as the percentage change in the variable in 

parentheses from its average over the prior two years. For example, %d(Sales)=[Sales(t)-

E[Sales(t)]]/E[Sales(t)], in which E[Sales(t)]=[Sales(t-1)+Sales(t-2)]/2. dsi is calculated 

as %d(Sales)-%d(Inventory), in which sales are operating revenue, and inventory is net inventory. 

We exclude firms with negative sales. At the end of June of each year t, we sort stocks into deciles 

based on dsi for the fiscal year ending in calendar year t-1 and calculate monthly decile portfolio 

returns from July of year t to June of t+1. 

B.2.4.12 % Change in Sales minus % Change in Accounts Receivable (dsa)  Following 

Abarbanell and Bushee (1998), we define the %d(.) operator as the percentage change in the 

variable in parentheses from its average over the prior two years. For 

example, %d(Sales)=[Sales(t)-E[Sales(t)]]/E[Sales(t)], in which E[Sales(t)]=[Sales(t-1)+Sales(t-

2)]/2. dsa is calculated as %d(Sales)-%d(Accounts receivable), in which sales are operating 

revenue, and accounts receivable is total receivables. We exclude firms with negative sales. At the 

end of June of each year t, we sort stocks into deciles based on dsa for the fiscal year ending in 

calendar year t-1 and calculate monthly decile portfolio returns from July of year t to June of t+1. 

B.2.4.13 % Change in Gross Margin minus % Change in Sales (dgs)  Following 

Abarbanell and Bushee (1998), we define the %d(.) operator as the percentage change in the 

variable in parentheses from its average over the prior two years. For 

example, %d(Sales)=[Sales(t)-E[Sales(t)]]/E[Sales(t)], in which E[Sales(t)]=[Sales(t-1)+Sales(t-

2)]/2. dgs is calculated as %d(Gross margin)-%d(Sales), in which sales are operating revenue, and 

gross margin is sales minus cost of goods sold. We exclude firms with negative sales. At the end 
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of June of each year t, we sort stocks into deciles based on dgs for the fiscal year ending in calendar 

year t-1 and calculate monthly decile portfolio returns from July of year t to June of t+1. 

B.2.4.14 % Change in Sales minus % Change in SG&A (dss)  Following Abarbanell and 

Bushee (1998), we define the %d(.) operator as the percentage change in the variable in 

parentheses from its average over the prior two years. For example, %d(Sales)=[Sales(t)-

E[Sales(t)]]/E[Sales(t)], in which E[Sales(t)]=[Sales(t-1)+Sales(t-2)]/2. dss is calculated 

as %d(Sales)-%d(SG&A), in which sales are operating revenue, and SG&A are selling, general, 

and administrative expenses. We exclude firms with negative sales. At the end of June of each year 

t, we sort stocks into deciles based on dss for the fiscal year ending in calendar year t-1 and 

calculate monthly decile portfolio returns from July of year t to June of t+1. 

B.2.4.15 Effective Tax Rate (etr)  Following Abarbanell and Bushee (1998), we measure 

the effective tax rate (etr) as 

𝑒𝑡𝑟(𝑡) = [
𝑇𝑎𝑥𝐸𝑥𝑝𝑒𝑛𝑠𝑒(𝑡)

𝐸𝐵𝑇(𝑡)
−

1

3
∑

𝑇𝑎𝑥𝐸𝑥𝑝𝑒𝑛𝑠𝑒(𝑡−𝜏)

𝐸𝐵𝑇(𝑡−𝜏)
3
𝜏=1 ] × 𝑑𝐸𝑃𝑆(𝑡),       (B21) 

in which TaxExpense(t) is the total income taxes paid in year t, EBT(t) is EBIT minus interest 

expense, and dEPS is the change in split-adjusted earnings per share between year t−1 and t, 

divided by the closing price at the end of year t−1. At the end of June of each year t, we sort stocks 

into deciles based on etr for the fiscal year ending in calendar year t-1 and calculate monthly decile 

portfolio returns from July of year t to June of t+1. 

B.2.4.16 Labor Force Efficiency (lfe)  Following Abarbanell and Bushee (1998), we 

measure labor force efficiency (lfe) as 

𝑙𝑓𝑒(𝑡) = [
𝑆𝑎𝑙𝑒𝑠(𝑡)

𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠(𝑡)
−

𝑆𝑎𝑙𝑒𝑠(𝑡−1)

𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠(𝑡−1)
] / 

𝑆𝑎𝑙𝑒𝑠(𝑡−1)

𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠(𝑡−1)
,           (B22) 

In which Sales(t) is net sales in year t, and Employees(t) is the number of employees. At the end 

of June of each year t, we sort stocks into deciles based on lfe for the fiscal year ending in calendar 

year t-1 and calculate monthly decile portfolio returns from July of year t to June of t+1. 

B.2.4.17 Tangibility (tan)  We measure tangibility (tan) as cash holdings + 0.715×accounts 

receivable + 0.547×inventory + 0.535×gross property, plant, and equipment (fixed assets), all 

scaled by total assets. At the end of June of each year t, we sort stocks into deciles based on tan for 

the fiscal year ending in calendar year t-1 and calculate monthly decile portfolio returns from July 

of year t to June of t+1. 

B.2.4.18 Quarterly Tangibility (tanq1, tanq6, and tanq12)  We measure quarterly 

tangibility (tanq) as cash holdings (zero if missing) + 0.715×accounts receivable (zero if missing) 

+ 0.547×inventory + 0.535×gross property, plant, and equipment (fixed assets), all scaled by total 

assets. At the beginning of each month t, we sort stocks into deciles based on the most recently 

released tanq and calculate monthly decile portfolio returns over months [t, t+n-1] (n=1, 6, and 12, 

corresponding to tanq1, tanq6, and tanq12, respectively). 

B.2.4.19 Cash Flow Volatility (vcf1, vcf6, and vcf12)  We measure cash flow volatility (vcf) 

as the standard deviation of the ratio of operating cash flows to sales during the past 16 quarters 

(with a minimum of eight nonmissing quarters). At the beginning of each month t, we sort stocks 

into deciles based on the most recently released vcf and calculate monthly decile portfolio returns 

over months [t, t+n-1] (n=1, 6, and 12, corresponding to vcf1, vcf6, and vcf12, respectively). 

B.2.4.20 Cash-to-Assets (cta1, cta6, and cta12)  We measure cash-to-assets (cta) as cash 

and cash equivalents divided by total assets. At the beginning of each month t, we sort stocks into 

deciles based on the most recently released cta and calculate monthly decile portfolio returns over 

months [t, t+n-1] (n=1, 6, and 12, corresponding to cta1, cta6, and cta12, respectively). 

B.2.4.21 Earnings Persistence (eper) and Earnings Predictability (eprd)  Following 
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Francis, LaFond, Olsson, and Schipper (2004), we estimate earnings persistence (eper) and 

earnings predictability (eprd) from a first-order autoregressive model for annual earnings per share. 

Earnings per share are net profits minus nonrecurrent gains/losses scaled by the number of total 

A-shares outstanding. At the end of June of each year t, we estimate the autoregressive model in 

the 10-year rolling window up to the fiscal year ending in calendar year t−1. Only firms with a 

complete 10-year history are included. eper is measured as the slope coefficient, and eprd is 

measured as the residual volatility. At the end of June of each year t, we sort stocks into deciles 

based on eper and eprd, and calculate monthly decile portfolio returns from July of year t to June 

of t+1. 

B.2.4.22 Earnings Smoothness (esm)  Following Francis, LaFond, Olsson, and Schipper 

(2004), we measure earnings smoothness (esm) as the ratio of the standard deviation of earnings 

scaled by one-year-lagged total assets to the standard deviation of cash flow from operations scaled 

by one-year-lagged total assets. Earnings are net profits minus nonrecurrent gains/losses. At the 

end of June of each year t, we sort stocks into deciles based on esm estimated over the 10-year 

rolling window up to the fiscal year ending in calendar year t−1. Only firms with a complete 10-

year history are included. We then calculate monthly decile portfolio returns from July of year t to 

June of t+1. 

B.2.4.23 Value Relevance of Earnings (evr)  Following Francis, LaFond, Olsson, and 

Schipper (2004), we measure the value relevance of earnings (evr) as the R2 from the following 

rolling-window regression: 

𝑅𝑖,𝑡 = 𝛿𝑖,0 + 𝛿𝑖,1𝐸𝐴𝑅𝑁𝑖,𝑡 + 𝛿𝑖,2𝑑𝐸𝑅𝐴𝑅𝑁𝑖,𝑡 + 𝜖𝑖,𝑡,             (B23) 

in which 𝑅𝑖,𝑡 is firms i’s 15-month stock return ending three months after the end of fiscal year 

ending in calendar year t. 𝐸𝐴𝑅𝑁𝑖,𝑡 is net profits minus nonrecurrent gains/losses for the fiscal 

year ending in calendar year t, scaled by the fiscal year-end market equity. 𝑑𝐸𝑅𝐴𝑅𝑁𝑖,𝑡 is the one-

year change in earnings scaled by market equity. At the end of June of each year t, we sort stocks 

into deciles based on evr estimated over the 10-year rolling window up to the fiscal year ending in 

calendar year t−1. Only firms with a complete 10-year history are included. We then calculate 

monthly decile portfolio returns from July of year t to June of t+1. 

B.2.4.24 Earnings Timeliness (etl) and Earnings Conservatism (ecs)  Following Francis, 

LaFond, Olsson, and Schipper (2004), we measure earnings timeliness (etl) and earnings 

conservatism (ecs) from the following rolling-window regression: 

𝐸𝐴𝑅𝑁𝑖,𝑡 = 𝛼𝑖,0 + 𝛼𝑖,1𝑁𝐸𝐺𝑖,𝑡+𝛽𝑖,1𝑅𝑖,𝑡 + 𝛽𝑖,2𝑁𝐸𝐺𝑖,𝑡 × 𝑅𝑖,𝑡 + 𝜖𝑖,𝑡,          (B24) 

in which 𝐸𝐴𝑅𝑁𝑖,𝑡  is net profits minus nonrecurrent gains/losses for the fiscal year ending in 

calendar year t scaled by the fiscal year-end market equity, 𝑅𝑖,𝑡 is firm i’s 15-month stock return 

ending three months after the end of fiscal year ending in calendar year t, 𝑁𝐸𝐺𝑖,𝑡 equals one if 

𝑅𝑖,𝑡 <0, and zero otherwise. We measure etl as the R2 and ecs as (𝛽𝑖,1 + 𝛽𝑖,2)/𝛽𝑖,1  from the 

regression in (B24). At the end of June of each year t, we sort stocks into deciles based on etl and 

ecs, both of which are estimated over the 10-year rolling window up to the fiscal year ending in 

calendar year t−1. Only firms with a complete 10-year history are included. We then calculate 

monthly decile portfolio returns from July of year t to June of t+1. 

B.2.4.25 Asset Liquidity (ala and alm)  We measure asset liquidity as cash + 0.75 × noncash 

current assets + 0.50 × tangible fixed assets. Cash is defined as cash and short-term investments, 

noncash current assets are current assets minus cash, and tangible fixed assets are total assets minus 

current assets, minus goodwill (zero if missing), and minus intangibles (zero if missing). ala is 

asset liquidity scaled by one-year-lagged total assets. alm is asset liquidity scaled by one-year-

lagged market value of assets. The market value of assets is total assets plus market equity minus 
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book equity. At the end of June of each year t, we sort stocks into deciles based on ala and alm for 

the fiscal year ending in calendar year t-1 and calculate monthly decile portfolio returns from July 

of year t to June of t+1. 

B.2.4.26 Quarterly Asset Liquidity (alaq1, alaq6, alaq12, almq1, almq6, and almq12)  

We measure quarterly asset liquidity as cash + 0.75 × noncash current assets + 0.50 × tangible 

fixed assets. Cash is defined as cash and short-term investments, noncash current assets are current 

assets minus cash, and tangible fixed assets are total assets minus current assets, minus goodwill 

(zero if missing), and minus intangibles (zero if missing). alaq is quarterly asset liquidity scaled 

by one-quarter-lagged total assets. almq is quarterly asset liquidity scaled by one-quarter-lagged 

market value of assets. The market value of assets is total assets plus market equity minus book 

equity. At the beginning of each month t, we sort stocks into deciles based on the most recently 

released alaq and almq, and calculate monthly decile portfolio returns over months [t, t+n-1] (n=1, 

6, and 12, corresponding to alaq1, alaq6, alaq12, almq1, almq6, and almq12, respectively). 

B.2.4.27 Tax Expense Surprises (tes1, tes6, and tes12)  Following Thomas and Zhang 

(2011), we measure tax expense surprises (tes) as the change in total tax expense, which is tax 

expense in quarter q minus tax expense in quarter q-4, scaled by total assets in quarter q-4. At the 

beginning of each month t, we sort stocks into deciles based on the most recently released tes and 

calculate monthly decile portfolio returns over months [t, t+n-1] (n=1, 6, and 12, corresponding to 

tes1, tes6, and tes12, respectively). 

B.2.4.28 Changes in Analyst Earnings Forecasts (def1, def6, and def12)  Following 

Hawkins, Chamberlin, and Daniel (1984), we measure changes in analyst earnings forecasts (def) 

as: 

𝑑𝑒𝑓 = (𝑓𝑖,𝑡−1 − 𝑓𝑖,𝑡−2)/(0.5|𝑓𝑖,𝑡−1| + 0.5|𝑓𝑖,𝑡−2|),           (B25) 

where 𝑓𝑖,𝑡−1 is the consensus mean forecast issued in month t−1 for firm i’s current fiscal year 

earnings, respectively. At the beginning of each month t, we sort stocks into deciles based on def 

and calculate monthly decile portfolio returns over months [t, t+n-1] (n=1, 6, and 12, 

corresponding to def1, def6, and def12, respectively). 

B.2.4.29 Revisions in Analyst Earnings Forecasts (re1, re6, and re12)  Following Chan, 

Jegadeesh, and Lakonishok (1996), we measure revisions in analyst earnings forecasts (re) as the 

six-month moving average of past changes in analysts’ forecasts: 

𝑟𝑒𝑖,𝑡 = ∑
𝑓𝑖,𝑡−𝜏−𝑓𝑖,𝑡−𝜏−1

𝑃𝑖,𝑡−𝜏−1

6
𝜏=1 ,                         (B26) 

where 𝑓𝑖,𝑡−𝜏 is the consensus mean forecast issued in month 𝑡 − 𝜏 for firm i’s current fiscal year 

earnings, and 𝑃𝑖,𝑡−𝜏−1 is the closing price in the prior month. We adjust for any stock splits and 

require a minimum of four monthly forecast changes when constructing re. At the beginning of 

each month t, we sort stocks into deciles based on re and calculate monthly decile portfolio returns 

over months [t, t+n-1] (n=1, 6, and 12, corresponding to re1, re6, and re12, respectively). 

B.2.4.30 Earnings Forecast–to-Price (efp1, efp6, and efp12)  Following Elgers, Lo, and 

Pfeiffer (2001), we measure analyst earnings forecast-to-price (efp) as the consensus median 

forecasts for the current fiscal year divided by the closing price. At the beginning of each month t, 

we sort stocks into deciles based on efp estimated in month t-1 and calculate monthly decile 

portfolio returns over months [t, t+n-1] (n=1, 6, and 12, corresponding to efp1, efp6, and efp12, 

respectively). 

B.2.4.31 Analyst Coverage (ana1, ana6, and ana12)  We measure analyst coverage (ana) 

as the number of analyst earnings forecasts for the current fiscal year. At the beginning of each 

month t, we sort stocks into deciles based on ana estimated in month t-1 and calculate monthly 



27 
 

decile portfolio returns over months [t, t+n-1] (n=1, 6, and 12, corresponding to ana1, ana6, and 

ana12, respectively). 

B.2.4.32 Dispersion in Analyst Forecasts (dis1, dis6, and dis12)  We measure dispersion 

in analyst earnings forecasts (dis) as the ratio of the standard deviation of earnings forecasts for 

the current fiscal year to the absolute value of the consensus mean forecasts. At the beginning of 

each month t, we sort stocks into deciles based on dis estimated in month t−1 and calculate monthly 

decile portfolio returns over months [t, t+n-1] (n=1, 6, and 12, corresponding to dis1, dis6, and 

dis12, respectively). 

B.2.4.33 Institutional Ownership (io)  At the end of June of each year t, we sort stocks into 

deciles based on institutional ownership (io) for the fiscal year ending in calendar year t-1. Firm-

level institutional ownership is calculated as the sum of the fractions of free-float A-shares held by 

mutual funds, brokers, insurance companies, security funds, entrusts, etc. We calculate monthly 

decile portfolio returns from July of year t to June of t+1. 

B.2.4.34 Quarterly Institutional Ownership (ioq1, ioq6, and ioq12)  At the beginning of 

each month t, we sort stocks into deciles based on the most recently released quarterly institutional 

ownership (ioq). Firm-level institutional ownership is calculated as the sum of the fractions of free-

float A-shares held by mutual funds, brokers, insurance companies, security funds, entrusts, etc. 

We calculate monthly decile portfolio returns over months [t, t+n-1] (n=1, 6, and 12, corresponding 

to ioq1, ioq6, and ioq12, respectively). 

B.2.4.35 SOE Indicator (soe1, soe6, and soe12)  We create a dummy variable, soe, for state-

owned enterprises. If a firm is a state-owned enterprise, soe equals 1, and 0 otherwise. At the 

beginning of each month t, we sort stocks into two groups based on soe in month t-1 and calculate 

monthly portfolio returns over months [t, t+n-1] (n=1, 6, and 12, corresponding to soe1, soe6, and 

soe12, respectively). 

B.2.4.36 Margin Trading and Short Selling Indicator (margin1, margin6, and margin12) 

We create a dummy variable, margin, for firms that are approved for margin trading and short 

selling. If a firm is on the margin trading and short selling approved list, margin equals 1, and 0 

otherwise. At the beginning of each month t, we sort stocks into two groups based on margin in 

month t-1 and calculate monthly portfolio returns over months [t, t+n-1] (n=1, 6, and 12, 

corresponding to margin1, margin6, and margin12, respectively). 

 

C. Additional Details on Methodologies 

C.1 Liu, Stambaugh, and Yuan’s (2019) Chinese Three-/Four-Factor Model 

The CH3 model has three factors. The first factor is the market factor, which is the same as 

in the Chinese CAPM. We then independently sort stocks into two size groups and three value 

groups to construct the size and value factors. The breakpoint for the size groups is the median 

market capitalization of the largest 70% of A-share stocks, and the breakpoints for the value groups 

are the 30th and 70th percentiles of the earnings-to-price ratio (E/P) for the largest 70% of A-share 

stocks. We obtain six portfolios at the intersections of the size and value groups. The size factor, 

SMB, is computed as the difference between the simple average of the returns on the three 

portfolios of small stocks (below the median market capitalization) and the simple average of the 

returns on the three portfolios of large stocks (above the median market capitalization). The value 

factor, VMG, is computed as the difference between the simple average of the returns on the two 

portfolios of value stocks (above the 70th percentile of E/P) and the simple average of the returns 

on the two portfolios of growth stocks (below the 30th percentile of E/P). 

The CH4 model adds a liquidity factor, PMO, to the CH3 model. The liquidity factor is based 
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on abnormal turnover, which is the ratio of average daily turnover in the past month to average 

daily turnover in the past year. Similar to the construction of VMG, we construct PMO by 

independently sorting stocks into two size groups and three abnormal turnover groups. PMO is 

then computed as the difference between the simple average of the returns on the two portfolios of 

low abnormal turnover stocks (below the 30th percentile of abnormal turnover) and the simple 

average of the returns on the two portfolios of high abnormal turnover stocks (above the 70th 

percentile of abnormal turnover). 

 

C.2 Multiple Tests 

C.2.1 Harvey and Liu’s (2020) Multiple-Testing Method 

We describe the Harvey and Liu’s (2020) multiple-testing method in the context of testing the 

performance of many trading strategies. There are N univariate strategies and D time periods. We 

arrange the high-minus-low return series into a D× N matrix, 𝑋0 . Suppose one believes that a 

fraction 𝑝0 of the N strategies are true. We develop a simulation-based framework to evaluate the 

error rates related to testing multiple hypotheses for a given 𝑝0. The choice of 𝑝0 is inherently 

subjective and depends on both previous experience and data summary statistics. 

For a given 𝑝0, we start by choosing 𝑝0 × 𝑁 strategies that are deemed to be true. A simple 

way to choose these strategies is to first rank the strategies by their absolute t-statistics and then 

select the top 𝑝0 × 𝑁 strategies with the highest absolute t-statistics. While this approach aligns 

with the idea that strategies with higher absolute t-statistics are more likely to be true, it ignores 

the sampling uncertainty inherent in ranking the strategies. To account for this uncertainty, we 

follow the steps below to perturb the data, rank the strategies based on the perturbed data, and 

evaluate the error rates: 

Step 1: We bootstrap the time periods of 𝑋0 and create an alternative panel of high-minus-

low returns, 𝑋𝑖. For 𝑋𝑖, we calculate the corresponding 1×N vector of absolute t-statistics, 𝑡𝑖. 

Step 2: We rank the strategies based on their absolute t-statistics, 𝑡𝑖 . For the top 𝑝0 × 𝑁 

strategies with the highest absolute t-statistics, we find the corresponding strategies in 𝑋0. We 

adjust these strategies in 𝑋0 so that their means equal the means of the top 𝑝0 × 𝑁 strategies in 

𝑋𝑖. We denote the return matrix of these adjusted strategies by 𝑋0,1
(𝑖)

. For the remaining strategies 

in 𝑋0, we adjust their returns to have zero means and denote the return matrix for these adjusted 

strategies by 𝑋0,0
(𝑖)

 . We combine 𝑋0,1
(𝑖)

  and 𝑋0,0
(𝑖)

  into a new return matrix 𝑌𝑖  by concatenating 

them. 

Step 3: For 𝑌𝑖, we bootstrap the time periods J times to evaluate the error rates for a fixed t-

statistic threshold. We know which strategies in 𝑌𝑖 are believed to be true (and false). This allows 

us to summarize the testing outcomes (𝑇𝑁𝑖,𝑗, 𝐹𝑃𝑖,𝑗, 𝑇𝑃𝑖,𝑗, 𝐹𝑁𝑖,𝑗) for the j-th bootstrap iteration, 

where 𝑇𝑁𝑖,𝑗 is the number of false strategies correctly identified as false, 𝐹𝑃𝑖,𝑗 is the number of 

false strategies incorrectly identified as true, 𝐹𝑁𝑖,𝑗 is the number of true strategies incorrectly 

identified as false, and 𝑇𝑃𝑖,𝑗 is the number of true strategies correctly identified as true. Table C1 

illustrates these four testing outcomes. 

Table C1. Summary of Testing Outcomes 
Decision Null Hypothesis 

H0: high-minus-low return is equal to zero 

Alternative Hypothesis 

H1: high-minus-low return is not equal to zero 

Reject False discovery (Type I error) 

𝐹𝑃𝑖,𝑗 

True discovery 

𝑇𝑃𝑖,𝑗 

Accept True non discovery 

𝑇𝑁𝑖,𝑗 

Miss discovery (Type II error) 

𝐹𝑁𝑖,𝑗 
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With these testing outcomes, we construct three types of error rates. The first one is the 

realized false discovery rate (RFDR): 𝑅𝐹𝐷𝑅𝑖,𝑗 =
𝐹𝑃𝑖,𝑗

𝐹𝑃𝑖,𝑗+𝑇𝑃𝑖,𝑗
 , which is the proportion of false 

discoveries (𝐹𝑃𝑖,𝑗) divided by all discoveries (𝐹𝑃𝑖,𝑗 + 𝑇𝑃𝑖,𝑗). The second type of error rate is the 

realized rate of misses (RMISS): 𝑅𝑀𝐼𝑆𝑆𝑖,𝑗 =
𝐹𝑁𝑖,𝑗

𝐹𝑁𝑖,𝑗+𝑇𝑁𝑖,𝑗
, which is the proportion of misses (𝐹𝑁𝑖,𝑗) 

divided by all strategies that are declared insignificant (𝐹𝑁𝑖,𝑗 + 𝑇𝑁𝑖,𝑗). The third type of error rate 

is the odds ratio (RRATIO): 𝑅𝑅𝐴𝑇𝐼𝑂𝑖,𝑗 =
𝐹𝑃𝑖,𝑗

𝐹𝑁𝑖,𝑗, which is the realized ratio of false discoveries 

(𝐹𝑃𝑖,𝑗) to misses (𝐹𝑁𝑖,𝑗). 

Step 4: We repeat Steps 1-3 above I times. That is, we bootstrap the data 𝑋0 I times, and 

each time we adjust it to a new return matrix 𝑌𝑖, and generate J bootstrapped random samples. We 

account for the sampling uncertainty in ranking the strategies and the uncertainty in generating the 

realized error rates for each ranking by averaging across both i and j. We calculate the final 

bootstrapped error rates as  

𝑇𝑌𝑃𝐸1 =
1

𝐼∗𝐽
∑ ∑ 𝑅𝐹𝐷𝑅𝑖,𝑗𝐽

𝑗=1
𝐼
𝑖=1 , 

𝑇𝑌𝑃𝐸2 =
1

𝐼∗𝐽
∑ ∑ 𝑅𝑀𝐼𝑆𝑆𝑖,𝑗𝐽

𝑗=1
𝐼
𝑖=1 ,                     (C1) 

  𝑂𝑅𝐴𝑇𝐼𝑂 =
1

𝐼∗𝐽
∑ ∑ 𝑅𝑅𝐴𝑇𝐼𝑂𝑖,𝑗𝐽

𝑗=1
𝐼
𝑖=1 , 

where 𝑇𝑌𝑃𝐸1 denotes the Type I error rate, 𝑇𝑌𝑃𝐸2 denotes the Type II error rate, and 𝑂𝑅𝐴𝑇𝐼𝑂 

denotes the odds ratio between false discoveries and misses. Note that our estimated 𝑇𝑌𝑃𝐸1 , 

𝑇𝑌𝑃𝐸2, and 𝑂𝑅𝐴𝑇𝐼𝑂 implicitly depend on the significance threshold. We set I=100 and J=1000. 

 

C.2.2 Other Multiple-Testing Methods 

We also consider other multiple-testing methods, including Benjamini and Hochberg (1995), 

Benjamini and Yekutieli (2001), and Barras, Scaillet, and Wermers (2010), to control for false 

discoveries. Suppose N denotes the number of univariate strategies. The null hypothesis is H0: 

𝑅𝑙
ℎ𝑖𝑔ℎ

− 𝑅𝑙
𝑙𝑜𝑤 = 0, and the alternative hypothesis is H1: 𝑅𝑙

ℎ𝑖𝑔ℎ
− 𝑅𝑙

𝑙𝑜𝑤 ≠ 0, for l=1, 2,…, N. The 

significance level 𝛼  is the probability of Type I error (e.g., 5%). The procedures for the 

aforementioned multiple-testing methods are as follows: 

First, we calculate the two-sided p-values based on the t-statistics of the high-minus-low 

return series. Second, we rank the original p-values from low to high, such that 𝑝(1) ≤ 𝑝(2) ≤

⋯ ≤ 𝑝(𝑙) ≤ ⋯ ≤ 𝑝(𝑁), for index l=1, 2,…, N. 

Third, we calculate the adjusted p-values (denoted by adj-p). BH, BHY, and BSW provide 

different methods to calculate the adjusted p-values. For BH, the adjusted p-value is 𝑎𝑑𝑗_𝑝 =
𝑙∗𝛼

𝑁
. 

For BHY, the adjusted p-value is 𝑎𝑑𝑗_𝑝 =
𝑙∗𝛼

𝑁∗𝑐(𝑁)
, where 𝑐(𝑁) = ∑

1

𝑙

𝑁
𝑙=1 . For BSW, the adjusted 

p-value is 𝑎𝑑𝑗_𝑝 =
𝑙∗𝛼

𝑁0
, where 𝑁0 (𝜋0 ∗ 𝑁) is the number of p-values expected to satisfy the null 

hypothesis. We estimate 𝜋̂0 as follows. We know that the vast majority of p-values (assuming 

uniform distribution between (0, 1)) larger than a sufficiently high 𝜆 ∈ (0,1) are likely to come 

from the null hypothesis. After selecting 𝜆 , we expect a proportion 
∑ {𝑝(𝑙)>𝜆}𝑁

𝑙=1

𝑁
  of p-values 

exceeding 𝜆 , where ∑ {𝑝(𝑙) > 𝜆}𝑁
𝑙=1   is the number of strategies with p-values exceeding 𝜆 . 

Extrapolating the (𝜆, 1) interval over the entire (0, 1) interval, we have 
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𝜋̂0(𝜆) =
𝑁̂0

𝑁
=

∑ {p(l)>λ}N
l=1

𝑁
∗

1

1−λ
.                            (C2) 

To choose the optimal 𝜆 , we apply the bootstrap procedure proposed by Storey (2002). This 

resampling procedure selects 𝜆 in three steps from the data to minimize an estimate of the mean-

squared error (MSE) of 𝜋̂0(λ):  

(1) We compute 𝜋̂0(λ) across a range of 𝜆 values (𝜆 = 0.3, 0.35, … , 0.7).  

(2) For each possible 𝜆 , we generate 1000 bootstrap replications of 𝜋̂0(λ)  by drawing with 

replacement from an N×1 vector of p-values. These replications are denoted by 𝜋̂0
𝑏(λ) for b=1, 

2, …,1000.  

(3) We compute the estimated MSE for each possible 𝜆: 

𝑀𝑆𝐸̂(λ) =
1

1000
∑ [𝜋̂0

𝑏(λ) − min
λ

𝜋̂0(λ)]
2

1000
𝑏=1 .                   (C3) 

We choose the optimal 𝜆 such that 𝜆 = arg min
𝜆

𝑀𝑆𝐸̂(λ) .  

Finally, we find the maximum index 𝑘 such that 𝑝(𝑙) ≤ 𝑎𝑑𝑗_𝑝 for 𝑙 ≤ 𝑘. This means that 

for 𝑙 > 𝑘, 𝑝(𝑙) > 𝑎𝑑𝑗_𝑝. Then 𝑝(𝑘) is the new p-value under multiple testing. We convert the 

new p-value to the two-sided t-statistic, which serves as the t-cutoff under multiple testing. Table 

C2 reports the t-statistic cutoffs under multiple testing. Panel A presents the cutoffs for different 

values of λ for the BSW method. Panel B reports the cutoffs for the BH, BHY, and BSW methods. 

 

Table C2. Multiple-Testing t-statistic Cutoffs 

Panel A. Multiple-testing t-statistic cutoffs for different 𝜆 in the BSW method 

 𝜆=0.3 𝜆= 0.6 𝜆= 0.65 𝜆= 0.8 

t-cutoff 2.69 2.69 2.69 2.69 

Panel B. Multiple-testing t-statistic cutoffs for different methods (significance level 𝛼 = 5%) 

 BHY BH BSW(𝜆= 0.70) 

t-cutoff 4.05 2.87 2.69 
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D. Additional Results on Univariate Strategies 

 

Table D1. Significant Long-leg Returns under Single Testing 
The table reports the numbers of univariate strategies with significant value-weighted (Panel A) and equal-weighted (Panel B) long-leg raw returns, CAPM alphas, 

CH3 alphas, and CH4 alphas, over the sample period from July 2000 to December 2020. Long-leg portfolios are decile 1 or decile 10, which has the highest raw 

returns. The statistical significance is based on the Newey-West standard errors with four lags, using the conventional single-testing t-statistic cutoff of 1.96. 

 

 Overall Significance Trading-based Accounting-based 
  Rate Liquidity Risk Past Returns Profitability Value Investment Others 
 454  106 52 52 73 44 51 76 

Panel A. Value-Weighted Strategies 

Raw return 2 0% 2 0 0 0 0 0 0 

CAPM alpha 2 0% 2 0 0 0 0 0 0 

CH3 alpha 2 0% 2 0 0 0 0 0 0 

CH4 alpha 1 0% 1 0 0 0 0 0 0 

Panel B. Equal-Weighted Strategies 

Raw return 20 4% 3 0 0 5 1 0 11 

CAPM alpha 20 4% 3 0 0 5 1 0 11 

CH3 alpha 15 3% 3 0 0 5 0 0 7 

CH4 alpha 13 3% 3 0 0 5 0 0 5 
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Table D2. Detailed Results on Univariate Strategies 
This table reports the average value-weighted and equal-weighted high-minus-low raw returns, CH4 alphas, and their 

associated t-statistics for the 454 univariate strategies. Details on the construction of the 454 strategies are provided 

in Internet Appendix B. 

 

Panel A. Liquidity 

 Value-Weighted Strategies Equal-Weighted Strategies 

 Raw 

return 

t-stat CH4 

alpha 

t-stat Raw 

return 

t-stat CH4 

alpha 

t-stat 
size: firm size, n=1, 6, 12 
size -0.38 -0.82 -0.38 -2.90 -0.38 -0.96 -0.30 -1.70 
size1 -0.70 -1.41 -0.50 -3.63 -0.62 -1.51 -0.35 -2.37 

size6 -0.34 -0.74 -0.32 -2.54 -0.27 -0.70 -0.18 -1.17 
size12 -0.34 -0.76 -0.32 -2.91 -0.30 -0.79 -0.21 -1.45 

turn: share turnover, k=1, 6, 12, m=0, n=1, 6, 12 

turn1-1 -1.26 -2.97 -0.16 -0.46 -1.70 -5.53 -0.68 -2.82 
turn1-6 -0.62 -1.56 0.12 0.39 -0.70 -2.59 -0.07 -0.29 

turn1-12 -0.21 -0.59 0.30 1.12 -0.42 -1.74 -0.01 -0.03 
turn6-1 -0.81 -1.82 0.03 0.08 -0.91 -2.94 -0.15 -0.55 

turn6-6 -0.25 -0.61 0.31 1.03 -0.43 -1.59 0.04 0.17 

turn6-12 -0.09 -0.26 0.35 1.36 -0.35 -1.41 0.00 -0.01 
turn12-1 -0.37 -0.88 0.30 0.90 -0.67 -2.38 -0.10 -0.42 

turn12-6 -0.11 -0.29 0.44 1.54 -0.42 -1.65 -0.04 -0.18 
turn12-12 -0.05 -0.15 0.40 1.40 -0.35 -1.36 -0.06 -0.23 

vturn: variation of share turnover, k=1, 6, 12, m=0, n=1, 6, 12 
vturn1-1 -1.56 -3.71 -0.69 -1.88 -1.89 -6.81 -1.01 -5.16 

vturn1-6 -0.64 -1.64 -0.08 -0.26 -0.70 -2.85 -0.18 -0.86 

vturn1-12 -0.26 -0.73 0.15 0.62 -0.43 -1.97 -0.07 -0.37 
vturn6-1 -1.09 -2.51 -0.32 -0.91 -1.14 -3.74 -0.44 -1.76 

vturn6-6 -0.53 -1.32 0.03 0.10 -0.62 -2.30 -0.12 -0.55 
vturn6-12 -0.23 -0.63 0.17 0.73 -0.42 -1.76 -0.10 -0.56 

vturn12-1 -0.76 -1.78 -0.03 -0.10 -0.90 -3.18 -0.24 -1.09 

vturn12-6 -0.35 -0.90 0.17 0.66 -0.58 -2.26 -0.19 -0.90 
vturn12-12 -0.15 -0.43 0.24 0.95 -0.40 -1.59 -0.16 -0.72 

cvturn: coefficient of variation of share turnover, k=1, 6, 12, m=0, n=1, 6, 12 
cvturn1-1 -0.72 -1.99 -0.79 -1.87 -1.32 -6.67 -1.24 -5.55 

cvturn1-6 -0.28 -1.42 -0.35 -1.59 -0.27 -2.76 -0.32 -3.24 
cvturn1-12 -0.16 -0.92 -0.22 -1.30 -0.12 -1.43 -0.18 -1.93 

cvturn6-1 -0.76 -2.30 -0.79 -2.06 -0.79 -3.56 -0.87 -3.42 

cvturn6-6 -0.58 -2.28 -0.43 -1.42 -0.39 -2.16 -0.44 -2.07 
cvturn6-12 -0.31 -1.35 -0.26 -1.12 -0.20 -1.23 -0.29 -1.42 

cvturn12-1 -0.88 -2.38 -0.60 -1.51 -0.77 -3.33 -0.64 -2.26 
cvturn12-6 -0.45 -1.59 -0.36 -1.14 -0.28 -1.37 -0.31 -1.21 

cvturn12-12 -0.25 -0.97 -0.23 -0.85 -0.16 -0.83 -0.26 -1.09 

abturn: abnormal turnover, k=12, m=0, n=1, 6, 12 
abturn1 -0.86 -2.32 -0.03 -0.12 -1.49 -5.24 -0.59 -3.73 

abturn6 -0.32 -1.37 0.16 0.77 -0.33 -2.07 0.15 1.03 
abturn12 -0.09 -0.48 0.12 0.80 -0.20 -1.60 0.07 0.57 

dtv: RMB trading volume, k=1, 6, 12, m=0, n=1, 6, 12 
dtv1-1 -0.86 -2.10 -0.18 -1.07 -1.55 -4.80 -0.48 -2.46 

dtv1-6 -0.39 -0.99 -0.01 -0.05 -0.78 -2.68 -0.13 -0.67 

dtv1-12 -0.34 -0.88 -0.10 -0.73 -0.65 -2.34 -0.20 -1.16 
dtv6-1 -0.52 -1.26 0.01 0.05 -0.92 -2.90 -0.17 -0.76 

dtv6-6 -0.36 -0.91 -0.06 -0.39 -0.64 -2.10 -0.19 -0.97 
dtv6-12 -0.39 -0.99 -0.18 -1.20 -0.65 -2.21 -0.31 -1.67 

dtv12-1 -0.54 -1.36 -0.14 -0.85 -0.89 -2.98 -0.38 -1.87 

dtv12-6 -0.47 -1.22 -0.22 -1.45 -0.71 -2.40 -0.35 -1.84 
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dtv12-12 -0.42 -1.10 -0.23 -1.48 -0.61 -2.10 -0.30 -1.60 

vdtv: variation of RMB trading volume, k=1, 6, 12, m=0, n=1, 6, 12 
vdtv1-1 -1.17 -2.89 -0.39 -2.22 -1.99 -6.38 -0.84 -4.14 

vdtv1-6 -0.47 -1.25 -0.09 -0.60 -0.88 -3.43 -0.24 -1.36 
vdtv1-12 -0.37 -1.01 -0.14 -1.04 -0.70 -2.86 -0.25 -1.70 

vdtv6-1 -0.73 -1.79 -0.15 -0.88 -1.16 -3.85 -0.38 -1.66 
vdtv6-6 -0.43 -1.11 -0.11 -0.72 -0.77 -2.78 -0.30 -1.59 

vdtv6-12 -0.42 -1.12 -0.22 -1.52 -0.72 -2.68 -0.38 -2.30 

vdtv12-1 -0.80 -2.03 -0.33 -2.11 -1.19 -4.12 -0.54 -2.72 
vdtv12-6 -0.62 -1.63 -0.36 -2.42 -0.89 -3.20 -0.47 -2.64 

vdtv12-12 -0.51 -1.35 -0.32 -2.02 -0.73 -2.69 -0.40 -2.34 
cvdtv: coefficient of variation of RMB trading volume, k=1, 6, 12, m=0, n=1, 6, 12 

cvdtv1-1 -0.60 -1.49 -0.63 -1.46 -1.42 -7.00 -1.28 -5.91 

cvdtv1-6 -0.32 -1.50 -0.33 -1.56 -0.36 -3.38 -0.35 -3.38 
cvdtv1-12 -0.18 -0.92 -0.21 -1.25 -0.18 -1.94 -0.19 -2.05 

cvdtv6-1 -0.89 -2.42 -0.62 -1.57 -0.97 -3.65 -0.73 -2.66 
cvdtv6-6 -0.61 -2.24 -0.36 -1.23 -0.47 -2.35 -0.34 -1.56 

cvdtv6-12 -0.29 -1.16 -0.23 -1.00 -0.23 -1.26 -0.23 -1.07 

cvdtv12-1 -1.08 -2.80 -0.58 -1.47 -0.89 -3.26 -0.54 -1.75 
cvdtv12-6 -0.68 -2.21 -0.44 -1.55 -0.41 -1.84 -0.27 -0.97 

cvdtv12-12 -0.36 -1.27 -0.28 -1.09 -0.22 -1.06 -0.21 -0.85 
Ami: Amihud illiquidity, k=1, 6, 12, m=0, n=1, 6, 12 

Ami1-1 0.48 1.09 0.19 1.31 1.01 2.78 0.47 2.61 
Ami1-6 0.27 0.65 0.09 0.71 0.50 1.55 0.18 1.06 

Ami1-12 0.23 0.58 0.14 1.17 0.43 1.37 0.19 1.28 

Ami6-1 0.17 0.40 0.03 0.21 0.43 1.28 0.20 1.01 
Ami6-6 0.21 0.52 0.12 0.92 0.31 0.96 0.16 0.93 

Ami6-12 0.17 0.44 0.12 0.92 0.33 1.04 0.17 1.06 
Ami12-1 0.12 0.30 0.18 1.08 0.37 1.11 0.29 1.48 

Ami12-6 0.17 0.44 0.21 1.39 0.31 0.96 0.20 1.13 

Ami12-12 0.10 0.26 0.16 1.07 0.24 0.74 0.08 0.49 
Lm: turnover-adjusted number of zero daily trading volume, k=1, 6, 12, m=0, n=1, 6, 12 

Lm1-1 1.22 3.12 0.23 0.60 1.46 5.93 0.62 2.30 
Lm1-6 0.54 1.54 -0.16 -0.50 0.70 3.29 0.21 0.85 

Lm1-12 0.21 0.64 -0.31 -1.14 0.42 2.23 0.10 0.46 
Lm6-1 0.00 -0.01 -0.47 -1.38 0.37 1.91 -0.03 -0.13 

Lm6-6 -0.15 -0.68 -0.54 -2.00 0.20 1.31 -0.03 -0.17 

Lm6-12 -0.12 -0.60 -0.53 -2.32 0.12 0.95 -0.03 -0.19 
Lm12-1 0.06 0.30 -0.13 -0.50 0.23 1.32 0.03 0.16 

Lm12-6 0.12 0.63 -0.26 -1.15 0.19 1.32 0.01 0.06 
Lm12-12 0.00 0.01 -0.36 -1.49 0.01 0.06 -0.13 -0.80 

Liquidity betas, k=60, m=0, n=1, 6, 12 

𝛽𝑟𝑒𝑡1 -0.39 -1.12 0.28 0.63 -0.46 -1.80 -0.09 -0.32 

𝛽𝑟𝑒𝑡6 -0.30 -0.89 0.22 0.51 -0.38 -1.62 -0.16 -0.56 

𝛽𝑟𝑒𝑡12 -0.28 -0.86 0.24 0.58 -0.36 -1.57 -0.20 -0.74 

𝛽𝑙𝑐𝑐1 -0.12 -0.29 -0.03 -0.20 0.15 0.49 0.10 0.58 

𝛽𝑙𝑐𝑐6 -0.08 -0.20 -0.02 -0.13 0.10 0.32 -0.01 -0.03 

𝛽𝑙𝑐𝑐12 -0.11 -0.28 -0.07 -0.47 0.04 0.12 -0.10 -0.67 

𝛽𝑙𝑟𝑐1 -0.01 -0.03 -0.43 -1.19 0.08 0.36 0.01 0.05 

𝛽𝑙𝑟𝑐6 0.00 -0.01 -0.38 -1.07 0.22 0.98 0.15 0.68 

𝛽𝑙𝑟𝑐12 0.04 0.13 -0.40 -1.18 0.22 1.02 0.14 0.65 

𝛽𝑙𝑐𝑟1 -0.03 -0.09 -0.19 -1.23 -0.27 -0.96 -0.22 -1.31 

𝛽𝑙𝑐𝑟6 -0.06 -0.16 -0.18 -1.22 -0.19 -0.67 -0.12 -0.74 

𝛽𝑙𝑐𝑟12 -0.06 -0.15 -0.16 -1.06 -0.15 -0.52 -0.07 -0.44 

𝛽𝑛𝑒𝑡1 -0.37 -0.98 -0.24 -1.42 -0.01 -0.03 0.00 -0.02 

𝛽𝑛𝑒𝑡6 -0.27 -0.72 -0.18 -1.25 -0.05 -0.16 -0.11 -0.78 
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𝛽𝑛𝑒𝑡12 -0.26 -0.68 -0.17 -1.17 -0.09 -0.30 -0.17 -1.20 

GUBA social media coverage, k=1, m=0, n=1, 6, 12 
post_num1 -1.43 -2.87 -0.64 -1.73 -2.10 -5.77 -1.07 -2.98 

post_num6 -1.01 -2.29 -0.45 -1.48 -1.45 -4.99 -0.75 -2.47 
post_num12 -0.86 -2.08 -0.48 -1.70 -1.25 -4.61 -0.75 -2.81 

read_num1 -1.07 -2.33 -0.24 -0.68 -1.73 -4.70 -0.62 -1.68 
read_num6 -0.81 -2.01 -0.26 -0.92 -1.20 -4.31 -0.46 -1.54 

read_num12 -0.75 -1.97 -0.34 -1.33 -1.06 -4.16 -0.54 -2.12 

com_num1 -1.16 -2.55 -0.33 -0.94 -1.84 -5.50 -0.81 -2.57 
com_num6 -0.82 -2.13 -0.30 -1.08 -1.24 -4.58 -0.58 -2.09 

com_num12 -0.72 -1.98 -0.35 -1.36 -1.09 -4.41 -0.62 -2.55 
wsvi: web search volume index, k=1, m=0, n=1, 6, 12 

wsvi1 -0.56 -0.93 -0.77 -2.48 -1.02 -2.20 -0.69 -2.12 

wsvi6 -0.32 -0.57 -0.60 -2.04 -0.60 -1.46 -0.46 -1.67 
wsvi12 -0.19 -0.34 -0.52 -1.82 -0.39 -0.97 -0.33 -1.32 

 

Panel B. Risk 

 Value-Weighted Strategies Equal-Weighted Strategies 

 Raw 

return 

t-stat CH4 

alpha 

t-stat Raw 

return 

t-stat CH4  

alpha 

t-stat 
iv: idiosyncratic volatility, annual sort 
iv -0.57 -1.29 -0.23 -0.72 -0.77 -2.61 -0.49 -1.61 
ivc: idiosyncratic volatility per the CAPM, k=1, m=0, n=1, 6, 12 

ivc1 -0.93 -2.41 0.50 1.21 -1.43 -5.66 -0.30 -0.94 
ivc6 -0.49 -1.38 0.23 0.61 -0.59 -2.72 0.00 0.01 

ivc12 -0.17 -0.50 0.26 0.85 -0.42 -2.12 -0.06 -0.25 

ivch3: idiosyncratic volatility per the CH3 factor model, k=1, m=0, n=1, 6, 12 
ivch3-1 -0.98 -2.63 0.40 0.98 -1.74 -7.27 -0.72 -2.03 

ivch3-6 -0.55 -1.60 0.17 0.45 -0.65 -3.32 -0.16 -0.60 
ivch3-12 -0.22 -0.67 0.21 0.70 -0.47 -2.59 -0.16 -0.71 

ivch4: idiosyncratic volatility per the CH4 factor model, k=1, m=0, n=1, 6, 12 

ivch4-1 -0.90 -2.54 0.43 1.38 -1.76 -7.54 -0.73 -2.25 
ivch4-6 -0.48 -1.41 0.21 0.61 -0.65 -3.32 -0.17 -0.66 

ivch4-12 -0.22 -0.66 0.23 0.81 -0.46 -2.57 -0.16 -0.69 
tv: total volatility, k=1, m=0, n=1, 6, 12 

tv1 -0.79 -1.90 0.69 1.54 -0.90 -3.18 0.22 0.68 
tv6 -0.56 -1.52 0.30 0.79 -0.60 -2.46 0.09 0.30 

tv12 -0.26 -0.77 0.26 0.91 -0.47 -2.16 -0.01 -0.06 

isc: idiosyncratic skewness per the CAPM, k=1, m=0, n=1, 6, 12 
isc1 -0.67 -3.15 -0.90 -2.78 -0.74 -4.87 -1.01 -5.29 

isc6 -0.22 -1.79 -0.40 -3.06 -0.25 -3.28 -0.36 -4.13 
isc12 -0.08 -0.78 -0.10 -0.88 -0.10 -1.60 -0.15 -1.93 

isch3: idiosyncratic skewness per the CH3 factor model, k=1, m=0, n=1, 6, 12 

isch3-1 -0.32 -1.32 -0.48 -1.79 -0.35 -2.62 -0.39 -2.87 
isch3-6 -0.18 -1.25 -0.27 -2.15 -0.15 -2.09 -0.18 -2.69 

isch3-12 -0.04 -0.34 -0.08 -0.77 -0.04 -0.68 -0.07 -1.12 
isch4: idiosyncratic skewness per the CH4 factor model, k=1, m=0, n=1, 6, 12 

isch4-1 -0.39 -1.91 -0.59 -2.69 -0.32 -2.32 -0.41 -3.69 
isch4-6 -0.11 -0.77 -0.25 -2.29 -0.11 -1.65 -0.15 -2.31 

isch4-12 0.00 0.00 -0.04 -0.38 0.00 0.05 -0.02 -0.36 

ts: total skewness, k=1, m=0, n=1, 6, 12 
ts1 -0.88 -2.96 -0.52 -1.46 -0.74 -4.48 -0.73 -3.82 

ts6 -0.23 -1.51 -0.14 -0.98 -0.25 -2.79 -0.23 -2.39 
ts12 -0.15 -1.10 -0.05 -0.45 -0.16 -2.03 -0.12 -1.64 

cs: co-skewness, k=1, m=0, n=1, 6, 12 

cs1 -0.38 -1.06 -0.33 -0.72 -0.23 -1.02 -0.12 -0.43 
cs6 -0.24 -1.07 -0.23 -0.91 -0.11 -0.89 -0.02 -0.11 
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cs12 -0.16 -0.83 -0.17 -1.04 -0.11 -1.10 -0.04 -0.38 

𝛽𝑚: market beta using monthly returns, k=60, m=0, n=1, 6, 12 

𝛽𝑚1 -0.46 -1.28 0.40 0.90 -0.56 -1.97 -0.06 -0.21 

𝛽𝑚6 -0.44 -1.24 0.16 0.36 -0.49 -1.88 -0.18 -0.62 

𝛽𝑚12 -0.36 -1.03 0.20 0.48 -0.45 -1.76 -0.22 -0.78 

𝛽: market beta using daily returns, k=12, m=0, n=1, 6, 12 
𝛽1 -0.49 -1.13 0.13 0.29 -0.37 -1.24 0.02 0.05 

𝛽6 -0.34 -0.87 0.16 0.40 -0.41 -1.49 -0.07 -0.25 

𝛽12 -0.21 -0.55 0.28 0.74 -0.32 -1.25 0.02 0.07 

𝛽−: downside beta, k=12, m=0, n=1, 6, 12 

𝛽−1 -0.29 -0.73 0.00 0.00 -0.13 -0.52 -0.13 -0.47 

𝛽−6 -0.02 -0.04 0.15 0.48 -0.16 -0.68 -0.20 -0.92 

𝛽−12 0.07 0.19 0.27 0.99 -0.05 -0.24 -0.09 -0.50 

𝛽𝐹𝑃: the Frazzini-Pedersen beta, k=12, m=0, n=1, 6, 12 
𝛽𝐹𝑃1 -0.63 -1.51 0.05 0.13 -0.54 -2.08 -0.02 -0.06 

𝛽𝐹𝑃6 -0.34 -0.82 0.04 0.10 -0.45 -1.85 -0.17 -0.73 

𝛽𝐹𝑃12 -0.21 -0.55 0.16 0.47 -0.35 -1.51 -0.11 -0.48 

𝛽𝐷𝑀: the Dimson beta, k=1, m=0, n=1, 6, 12 

𝛽𝐷𝑀1 1.04 2.74 1.56 3.41 0.91 3.31 1.19 4.39 

𝛽𝐷𝑀6 -0.01 -0.06 0.27 1.01 0.05 0.39 0.21 1.18 

𝛽𝐷𝑀12 -0.06 -0.29 0.13 0.64 -0.02 -0.20 0.10 0.71 
tail: tail risk, k=120, m=0, n=1, 6, 12 

tail1 0.29 0.98 -0.01 -0.03 0.32 1.81 0.11 0.61 
tail6 0.18 0.67 -0.06 -0.20 0.17 1.08 0.00 0.03 

tail12 0.13 0.55 -0.13 -0.46 0.13 0.88 -0.04 -0.22 

Firm news, k=1, m=0, n=1, 6, 12 
paper_news1 -0.41 -1.03 -0.23 -1.13 -0.23 -1.11 0.01 0.08 

paper_news6 -0.27 -0.81 -0.24 -1.52 -0.13 -0.71 -0.10 -0.80 
paper_news12 -0.19 -0.55 -0.16 -1.02 -0.01 -0.04 0.08 0.84 

inter_news1 -0.17 -0.53 -0.28 -1.81 0.00 0.00 -0.11 -1.22 

inter_news6 -0.15 -0.47 -0.17 -1.03 -0.01 -0.07 0.06 0.63 
inter_news12 -0.16 -0.54 -0.27 -1.73 -0.02 -0.12 -0.08 -0.95 

 

Panel C. Past Returns 

 Value-Weighted Strategies Equal-Weighted Strategies 

 Raw 

return 

t-stat CH4 

alpha 

t-stat Raw 

return 

t-stat CH4  

alpha 

t-stat 
Short-term prior k-month cumulative returns, k=11, 9, 6, 3, m=1, n=1, 6, 12 
𝑅𝑡−12,𝑡−21 0.61 1.43 0.84 1.41 0.46 1.26 0.72 1.50 

𝑅𝑡−12,𝑡−26 0.42 1.12 0.26 0.46 0.29 0.91 0.20 0.46 

𝑅𝑡−12,𝑡−212 0.32 1.00 0.08 0.17 0.11 0.39 -0.06 -0.15 

𝑅𝑡−10,𝑡−21 0.35 0.82 1.02 1.87 0.33 1.00 0.61 1.34 

𝑅𝑡−10,𝑡−26 0.57 1.60 0.53 1.05 0.38 1.24 0.33 0.78 

𝑅𝑡−10,𝑡−212 0.27 0.89 0.12 0.27 0.10 0.40 -0.05 -0.13 

𝑅𝑡−7,𝑡−21 0.22 0.52 1.22 2.55 0.31 1.00 0.84 2.15 

𝑅𝑡−7,𝑡−26 0.62 1.86 0.87 1.94 0.53 1.92 0.65 1.75 

𝑅𝑡−7,𝑡−212 0.32 1.20 0.33 0.89 0.20 0.86 0.13 0.43 

𝑅𝑡−4,𝑡−21 0.26 0.72 1.17 2.60 0.08 0.27 0.62 1.83 

𝑅𝑡−4,𝑡−26 0.47 1.73 0.95 2.81 0.42 2.07 0.68 2.40 

𝑅𝑡−4,𝑡−212 0.39 1.89 0.56 2.16 0.24 1.45 0.28 1.21 

Prior one-month return, k=1, m=0, n=1, 6, 12 

𝑅𝑡−11 -0.73 -1.88 -0.14 -0.34 -1.33 -4.46 -0.56 -1.96 

𝑅𝑡−16 -0.03 -0.22 0.43 2.40 -0.15 -1.14 0.26 1.64 

𝑅𝑡−112 0.23 1.82 0.39 2.42 0.11 1.08 0.25 1.85 

Long-term prior k-month cumulative returns, k=24, 48, m=12, n=1, 6, 12 

𝑅𝑡−36,𝑡−131 -0.51 -1.53 -0.62 -1.47 -0.52 -1.93 -0.70 -2.09 

𝑅𝑡−36,𝑡−136 -0.34 -1.07 -0.33 -0.93 -0.27 -1.10 -0.33 -1.16 
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𝑅𝑡−36,𝑡−1312 -0.30 -0.96 -0.25 -0.73 -0.27 -1.16 -0.24 -0.90 

𝑅𝑡−60,𝑡−131 -0.55 -1.43 -0.54 -1.35 -0.45 -1.48 -0.46 -1.35 

𝑅𝑡−60,𝑡−136 -0.53 -1.37 -0.45 -1.10 -0.44 -1.54 -0.32 -1.03 

𝑅𝑡−60,𝑡−1312 -0.51 -1.37 -0.30 -0.78 -0.48 -1.72 -0.25 -0.89 
inr: industry return, k=6, m=0, n=1, 6, 12 

inr1 0.76 2.15 1.55 3.76 0.76 2.15 1.55 3.76 
inr6 0.56 1.80 1.11 2.68 0.56 1.80 1.11 2.68 

inr12 0.41 1.59 0.62 1.99 0.41 1.59 0.62 1.99 

ilr: industry lead-lag effect, k=1, m=0, n=1, 6, 12 
ilr1 0.58 1.94 0.79 2.44 0.58 1.94 0.79 2.44 

ilr6 0.16 1.11 0.62 3.50 0.16 1.11 0.62 3.50 
ilr12 0.18 1.49 0.41 2.73 0.18 1.49 0.41 2.73 

crchg: cumulative return changes, k=12, m=1, n=1, 6, 12 

crchg1 -0.18 -0.52 0.88 2.50 -0.02 -0.08 0.57 2.18 
crchg6 0.52 2.69 0.94 4.09 0.46 2.93 0.74 3.72 

crchg12 0.18 1.22 0.38 2.29 0.14 1.30 0.25 1.84 
Prior k-month residual returns, k=11, 6, m=0, n=1, 6, 12 

𝑅𝑅𝑡−12,𝑡−21 0.55 2.18 0.89 2.41 0.63 3.21 0.65 2.42 

𝑅𝑅𝑡−12,𝑡−26 0.23 0.99 0.29 1.02 0.29 1.66 0.29 1.26 

𝑅𝑅𝑡−12,𝑡−212 0.15 0.80 0.13 0.59 0.12 0.81 0.06 0.31 

𝑅𝑅𝑡−7,𝑡−21 0.38 1.54 0.89 2.93 0.41 2.17 0.65 2.96 

𝑅𝑅𝑡−7,𝑡−26 0.37 1.85 0.77 2.93 0.42 2.77 0.59 2.90 

𝑅𝑅𝑡−7,𝑡−212 0.16 0.89 0.33 1.67 0.17 1.21 0.22 1.29 
52wh: 52-week high, k=12, m=0, n=1, 6, 12 

52wh1 0.58 1.24 0.74 1.49 0.11 0.25 0.41 0.90 

52wh6 0.78 2.15 0.78 1.64 0.72 2.32 0.77 1.94 
52wh12 0.71 2.31 0.51 1.26 0.61 2.26 0.50 1.44 

mdr: maximum daily return, k=1, m=0, n=1, 6, 12 
mdr1 -0.66 -1.71 0.71 1.78 -1.08 -4.12 0.07 0.21 

mdr6 -0.28 -0.84 0.62 1.85 -0.49 -2.47 0.21 0.86 

mdr12 0.02 0.05 0.57 2.07 -0.32 -1.79 0.10 0.48 
pps: share price, k=1, m=0, n=1, 6, 12 

pps1 0.06 0.19 0.65 1.93 -0.40 -1.65 0.06 0.18 
pps6 0.17 0.54 0.60 1.74 -0.19 -0.80 0.13 0.41 

pps12 0.14 0.47 0.50 1.45 -0.20 -0.86 0.11 0.35 
abr: cumulative abnormal returns around earnings announcement dates, n=1, 6, 12 

abr1 0.69 2.58 0.74 2.45 0.75 4.38 0.86 4.45 

abr6 0.24 1.16 0.43 1.86 0.43 3.30 0.51 3.26 
abr12 0.21 1.24 0.35 2.20 0.30 2.73 0.34 2.94 

Ra1: seasonality returns in year t-1 
Ra1 0.52 1.67 0.27 0.72 0.51 2.25 0.31 1.26 

Rn1: non-seasonality returns in year t-1 

Rn1 0.05 0.10 0.80 1.38 -0.20 -0.56 0.40 0.87 
Ra25: seasonality returns between year t-2 and t-5 

Ra25 0.76 2.93 0.89 2.52 0.49 3.13 0.49 2.56 
Rn25: seasonality returns between year t-2 and t-5 

Rn25 -0.72 -1.79 -0.57 -1.19 -0.91 -2.97 -0.76 -2.02 

 

Panel D. Profitability 

 Value-Weighted Strategies Equal-Weighted Strategies 
 Raw 

return 

t-stat CH4 

alpha 

t-stat Raw 

return 

t-stat CH4  

alpha 

t-stat 

roe: return on equity, n=1, 6, 12 
roe1 1.26 3.73 0.34 0.92 1.18 4.47 0.48 1.78 

roe6 0.96 3.05 0.31 1.12 0.78 3.09 0.21 0.86 

roe12 0.74 2.41 0.26 1.14 0.53 2.25 0.08 0.37 
droe: 4-quarter change in return on equity, n=1, 6, 12 
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droe1 1.00 4.23 0.62 1.97 1.10 6.81 0.71 4.01 

droe6 0.78 4.25 0.35 1.51 0.75 5.81 0.39 2.72 
droe12 0.49 3.12 0.20 1.28 0.44 3.97 0.16 1.25 

roa: return on assets, n=1, 6, 12 
roa1 1.23 3.62 0.53 1.38 1.24 4.56 0.64 2.07 

roa6 1.01 3.25 0.48 1.47 0.86 3.21 0.35 1.15 
roa12 0.76 2.51 0.38 1.32 0.61 2.40 0.20 0.69 

droa: 4-quarter change in return on assets, n=1, 6, 12 

droa1 0.97 4.56 0.65 2.06 1.09 7.82 0.78 4.54 
droa6 0.80 4.72 0.42 1.82 0.76 6.75 0.44 3.26 

droa12 0.36 2.46 0.12 0.67 0.46 4.60 0.21 1.76 
sue: standard unexpected earnings, n=1, 6, 12 

sue1 0.91 2.96 0.26 0.78 1.13 7.02 0.68 3.79 

sue6 0.67 2.79 0.16 0.52 0.72 4.85 0.29 1.81 
sue12 0.50 2.35 0.07 0.30 0.49 3.57 0.13 0.93 

rs: revenue surprises, n=1, 6, 12 
rs1 0.47 1.78 0.27 1.15 0.89 6.08 0.57 3.55 

rs6 0.46 2.13 0.27 1.16 0.62 5.25 0.39 2.73 

rs12 0.45 2.28 0.32 1.76 0.45 3.61 0.23 1.74 
rna: return on net operating assets, n=1, 6, 12 

rna 0.55 1.89 -0.04 -0.11 0.45 1.79 0.08 0.28 
rnaq1 0.84 3.05 0.30 0.74 1.12 4.49 0.52 1.87 

rnaq6 0.66 2.38 0.15 0.38 0.79 3.34 0.27 1.07 
rnaq12 0.53 2.17 0.09 0.24 0.60 2.67 0.18 0.76 

pm: profit margin, n=1, 6, 12 

pm 0.42 1.07 0.04 0.17 0.28 1.10 0.13 0.59 
pmq1 0.75 2.08 -0.03 -0.13 0.71 2.92 0.29 1.56 

pmq6 0.44 1.31 -0.16 -0.87 0.35 1.53 0.06 0.34 
pmq12 0.42 1.30 -0.08 -0.45 0.25 1.12 0.01 0.04 

ato: assets turnover, n=1, 6, 12 

ato 0.58 3.07 0.32 1.00 0.45 3.30 0.25 1.42 
atoq1 0.52 2.46 0.25 0.75 0.62 4.00 0.25 1.21 

atoq6 0.49 2.40 0.23 0.65 0.55 3.44 0.23 1.11 
atoq12 0.44 2.39 0.22 0.66 0.54 3.64 0.29 1.50 

ct: capital turnover, n=1, 6, 12 
ct 0.17 0.69 0.35 1.23 0.29 1.63 0.20 0.94 

ctq1 0.32 1.20 0.46 1.51 0.66 3.58 0.33 1.42 

ctq6 0.24 0.96 0.35 1.18 0.55 3.00 0.29 1.29 
ctq12 0.21 0.83 0.32 1.11 0.49 2.67 0.28 1.24 

gpa: gross profits-to-assets, annual sort 
gpa 0.51 1.39 0.38 1.04 0.44 1.59 0.17 0.60 

gpla: gross profits-to-lagged assets, n=1, 6, 12 

gpla 0.55 1.52 0.33 0.92 0.42 1.46 0.12 0.43 
gplaq1 1.15 3.15 0.53 1.35 1.22 4.45 0.59 1.95 

gplaq6 0.97 2.90 0.43 1.23 0.83 3.11 0.29 0.99 
gplaq12 0.74 2.34 0.37 1.21 0.63 2.48 0.21 0.76 

ope: operating profits-to-book equity, annual sort 
ope 0.63 1.73 0.12 0.43 0.37 1.45 -0.02 -0.09 

ople: operating profits-to-lagged book equity, n=1, 6, 12 

ople 0.57 1.57 0.22 0.79 0.30 1.12 -0.07 -0.35 
opleq1 1.20 3.70 0.35 1.07 1.21 4.74 0.54 2.29 

opleq6 0.92 3.09 0.28 1.05 0.76 3.09 0.18 0.84 
opleq12 0.73 2.59 0.28 1.26 0.52 2.26 0.05 0.27 

opa: operating profits-to-assets, annual sort 

opa 0.60 1.59 0.46 1.42 0.41 1.50 0.16 0.59 
opla: operating profits-to-lagged assets, n=1, 6, 12 
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opla 0.54 1.52 0.38 1.24 0.36 1.26 0.10 0.36 

oplaq1 1.09 3.16 0.48 1.28 1.24 4.59 0.64 2.19 
oplaq6 0.94 2.96 0.42 1.28 0.85 3.24 0.31 1.10 

oplaq12 0.73 2.41 0.35 1.22 0.64 2.56 0.23 0.86 
tbi: taxable income-to-book income, n=1, 6, 12 

tbi 0.06 0.19 0.21 0.74 0.00 0.03 -0.01 -0.07 
tbiq1 -0.04 -0.15 0.24 0.78 0.14 1.59 0.11 0.93 

tbiq6 -0.11 -0.47 0.19 0.79 0.06 0.76 0.03 0.27 

tbiq12 -0.11 -0.57 0.09 0.44 -0.01 -0.11 -0.07 -0.77 
bl: book leverage, n=1, 6, 12 

bl -0.19 -0.53 -0.70 -2.00 -0.27 -1.01 -0.48 -1.54 
blq1 -0.14 -0.37 -0.61 -1.77 -0.09 -0.35 -0.27 -0.89 

blq6 -0.12 -0.32 -0.60 -1.72 -0.10 -0.40 -0.36 -1.23 

blq12 -0.14 -0.39 -0.58 -1.64 -0.19 -0.73 -0.43 -1.45 
sg: sales growth, n=1, 6, 12 

sg 0.19 0.75 0.35 1.15 0.07 0.46 0.02 0.11 
sgq1 0.91 3.65 0.57 1.79 1.01 5.97 0.73 3.61 

sgq6 0.62 3.25 0.56 2.37 0.64 4.46 0.44 2.54 

sgq12 0.46 2.71 0.48 2.45 0.45 3.58 0.29 1.78 
F: Fundamental score, n=1, 6, 12 

F 0.21 0.97 -0.11 -0.54 0.24 1.40 -0.10 -0.60 
Fq1 0.68 2.42 -0.33 -1.06 0.88 5.90 0.32 2.13 

Fq6 0.44 2.46 -0.24 -1.30 0.64 5.11 0.25 2.00 
Fq12 0.48 2.83 -0.07 -0.45 0.50 4.06 0.17 1.38 

O: Ohlson’s (1980) O-score, n=1, 6, 12 

O -0.43 -1.30 -0.35 -1.02 -0.36 -1.57 -0.33 -1.11 
Oq1 -0.40 -1.41 -0.36 -1.37 -0.47 -2.30 -0.42 -1.62 

Oq6 -0.21 -0.76 -0.19 -0.72 -0.32 -1.60 -0.31 -1.17 
Oq12 -0.29 -1.08 -0.29 -1.03 -0.34 -1.69 -0.37 -1.35 

Z: Altman’s (1968) Z-score, n=1, 6, 12 

Z 0.06 0.15 0.32 0.58 -0.07 -0.21 0.16 0.36 
Zq1 -0.03 -0.07 0.21 0.35 -0.12 -0.36 0.07 0.15 

Zq6 -0.02 -0.06 0.19 0.32 -0.10 -0.30 0.12 0.27 
Zq12 0.01 0.04 0.25 0.47 -0.05 -0.16 0.17 0.39 

 

Panel E. Value 

 Value-Weighted Strategies Equal-Weighted Strategies 

 Raw 

return 

t-stat CH4 

alpha 

t-stat Raw 

return 

t-stat CH4  

alpha 

t-stat 
bmj: book-to-June-end market equity, annual sort 
bmj 0.39 1.00 0.03 0.06 0.54 1.69 0.21 0.44 
bm: book-to-market equity, n=1, 6, 12 

bm 0.43 0.98 0.03 0.05 0.54 1.66 0.12 0.26 

bmq1 0.59 1.34 -0.16 -0.25 0.86 2.40 0.19 0.38 
bmq6 0.32 0.74 -0.14 -0.21 0.46 1.33 0.04 0.08 

bmq12 0.33 0.80 -0.15 -0.24 0.47 1.41 0.07 0.15 
dm: debt-to-market equity, n=1, 6, 12 

dm 0.12 0.30 -0.43 -0.93 0.17 0.51 -0.15 -0.34 
dmq1 0.06 0.15 -0.60 -1.31 0.51 1.41 0.08 0.17 

dmq6 0.01 0.02 -0.57 -1.24 0.27 0.79 -0.10 -0.23 

dmq12 0.03 0.08 -0.51 -1.09 0.22 0.66 -0.12 -0.26 
am: assets-to-market equity, n=1, 6, 12 

am 0.25 0.59 -0.33 -0.66 0.30 0.85 -0.12 -0.26 
amq1 0.19 0.46 -0.74 -1.54 0.71 1.84 0.09 0.17 

amq6 0.12 0.28 -0.51 -1.02 0.39 1.06 -0.04 -0.09 

amq12 0.19 0.48 -0.37 -0.73 0.38 1.06 -0.01 -0.03 
ep: earnings-to-price, n=1, 6, 12 
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ep 0.49 1.28 -0.05 -0.19 0.50 1.76 0.00 0.00 

epq1 1.23 3.43 0.08 0.38 1.35 5.04 0.39 2.51 
epq6 0.79 2.41 -0.10 -0.54 0.81 3.35 0.07 0.48 

epq12 0.64 1.93 -0.07 -0.35 0.63 2.63 0.01 0.09 
cfp: cash flow-to-price, n=1, 6, 12 

cfp 0.17 0.80 0.03 0.12 0.25 2.18 0.09 0.75 
cfpq1 -0.06 -0.28 -0.03 -0.14 0.13 1.35 0.19 1.97 

cfpq6 0.09 0.60 0.16 0.98 0.16 2.50 0.18 2.44 

cfpq12 0.02 0.17 0.11 0.88 0.07 1.39 0.06 1.09 
sr: 5-year sales growth rank, annual sort 

sr -0.41 -1.24 -0.52 -1.48 -0.21 -1.06 -0.38 -1.61 
em: enterprise multiple, n=1, 6, 12 

em 0.14 0.51 -0.04 -0.10 0.01 0.08 0.16 1.32 

emq1 -0.06 -0.34 -0.07 -0.29 0.06 0.61 0.10 0.91 
emq6 0.03 0.25 0.11 0.75 0.02 0.20 0.06 0.61 

emq12 0.01 0.06 -0.02 -0.12 0.00 0.06 0.01 0.06 
sp: sales-to-price, n=1, 6, 12 

sp 0.52 1.44 -0.16 -0.33 0.45 1.80 -0.08 -0.26 

spq1 0.58 1.65 -0.47 -1.15 0.99 3.84 0.22 0.73 
spq6 0.51 1.48 -0.35 -0.83 0.67 2.90 0.07 0.24 

spq12 0.47 1.43 -0.25 -0.58 0.63 2.75 0.06 0.21 
ocfp: operating cash flow-to-price, n=1, 6, 12 

ocfp 0.30 1.12 -0.10 -0.45 0.49 2.76 0.12 0.73 
ocfpq1 0.14 0.61 -0.24 -1.09 0.36 2.60 0.11 0.78 

ocfpq6 0.21 1.11 0.02 0.12 0.32 2.62 0.18 1.46 

ocfpq12 0.13 0.78 0.04 0.27 0.28 2.46 0.10 0.85 
de: debt-to-book equity, annual sort 

de -0.16 -0.44 -0.71 -2.03 -0.26 -1.00 -0.51 -1.59 
ir: intangible return, annual sort 

ir -0.35 -0.93 -0.44 -0.90 -0.42 -1.45 -0.48 -1.20 

ebp: enterprise book-to-price, n=1, 6, 12 
ebp 0.16 0.40 -0.08 -0.13 0.26 0.81 -0.06 -0.13 

ebpq1 0.42 1.00 0.12 0.19 0.65 1.71 0.22 0.41 
ebpq6 0.17 0.41 0.00 0.01 0.26 0.73 -0.02 -0.04 

ebpq12 0.06 0.17 -0.13 -0.22 0.23 0.66 -0.04 -0.07 
ndp: net debt-to-price, n=1, 6, 12 

ndp 0.01 0.05 -0.12 -0.35 0.06 0.28 -0.02 -0.09 

ndpq1 0.15 0.44 -0.30 -0.63 0.26 0.93 -0.10 -0.29 
ndpq6 0.05 0.15 -0.23 -0.53 0.11 0.43 -0.09 -0.25 

ndpq12 0.10 0.34 -0.15 -0.36 0.16 0.66 0.00 0.00 

 

Panel F. Investment 

 Value-Weighted Strategies Equal-Weighted Strategies  
 Raw 

return 

t-stat CH4 

alpha 

t-stat Raw 

return 

t-stat CH4  

alpha 

t-stat 

aci: abnormal corporate investment, annual sort 
aci -0.03 -0.17 -0.02 -0.05 0.19 1.63 0.16 1.00 

ag: investment-to-assets, n=1, 6, 12 
ag -0.03 -0.10 0.23 0.75 0.05 0.27 0.15 0.72 

agq1 0.65 2.44 0.64 2.18 0.67 3.33 0.55 2.50 

agq6 0.44 1.70 0.54 1.89 0.41 2.08 0.34 1.51 
agq12 0.26 1.02 0.42 1.55 0.21 1.19 0.19 0.88 

dpia: changes in PPE and inventory-to-assets, annual sort 
dpia 0.06 0.21 0.36 1.34 0.04 0.26 0.14 0.77 

noa: net operating assets, annual sort 

noa -0.36 -1.23 -0.01 -0.05 -0.23 -1.37 -0.05 -0.24 
dnoa: changes in net operating assets, annual sort 
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dnoa -0.18 -0.80 -0.15 -0.52 0.01 0.05 0.13 0.70 

ig: 1/2/3-year investment growth, annual sort 
ig 0.06 0.34 -0.03 -0.11 0.25 2.22 0.16 1.26 

ig2 0.04 0.20 0.26 1.01 0.13 1.12 0.12 0.72 
ig3 -0.24 -1.19 0.13 0.48 0.08 0.65 0.17 1.08 

nsi: net stock issues, annual sort 
nsi -0.12 -0.50 0.07 0.24 -0.24 -1.74 -0.08 -0.46 

cei: composite equity issuance, annual sort 

cei 0.47 1.46 0.17 0.46 0.48 1.86 0.17 0.56 
cdi: composite debt issuance, annual sort 

cdi -0.11 -0.42 0.31 1.12 -0.08 -0.47 0.24 1.29 
ivg: inventory growth, annual sort 

ivg 0.07 0.39 0.36 1.74 0.02 0.14 0.13 0.84 

ivchg: inventory changes, annual sort 
ivchg 0.02 0.11 0.09 0.44 -0.07 -0.50 -0.05 -0.33 

oa: operating accruals, annual sort 
oa -0.10 -0.39 0.12 0.45 -0.19 -1.44 -0.06 -0.39 

ta: total accruals, annual sort 

ta 0.09 0.45 -0.23 -0.96 0.22 1.59 0.06 0.34 
dwc: changes in net non-cash working capital, annual sort 

dwc -0.02 -0.15 0.04 0.23 -0.07 -0.54 0.09 0.66 
dcoa: changes in current operating assets, annual sort 

dcoa -0.04 -0.18 0.01 0.03 -0.09 -0.56 -0.07 -0.35 
dcol: changes in current operating liabilities, annual sort 

dcol 0.23 1.19 0.22 0.86 0.10 0.73 0.11 0.68 

dnco: changes in net non-current operating assets, annual sort 
dnco 0.05 0.30 0.21 1.02 0.12 0.86 0.17 1.11 

dnca: changes in non-current operating assets, annual sort 
dnca -0.07 -0.39 0.25 1.12 0.11 0.74 0.22 1.22 

dncl: changes in non-current operating liabilities, annual sort 

dncl -0.07 -0.36 0.06 0.31 -0.06 -0.50 0.04 0.31 
dfin: changes in net financial assets, annual sort 

dfin 0.19 0.95 0.06 0.27 0.12 0.86 -0.01 -0.06 
dsti: changes in short-term investment, annual sort 

dsti 0.06 0.30 0.02 0.09 -0.02 -0.14 -0.06 -0.52 
dlti: changes in long-term investment, annual sort 

dlti -0.04 -0.14 0.15 0.54 0.08 0.72 0.14 1.03 

dfnl: changes in financial liabilities, annual sort 
dfnl -0.28 -1.47 -0.06 -0.30 -0.12 -0.90 -0.03 -0.18 

dbe: changes in common equity, annual sort 
dbe 0.18 0.56 0.17 0.50 0.16 0.76 -0.01 -0.05 

dac: discretionary accruals, annual sort, n=12 

dac -0.26 -1.08 0.08 0.35 -0.14 -1.28 0.08 0.65 
poa: percent operating accruals, annual sort 

poa -0.29 -1.28 -0.13 -0.59 -0.33 -2.42 -0.19 -1.16 
pta: percent total accruals, annual sort 

pta -0.13 -0.58 0.00 0.01 -0.09 -0.84 0.14 1.20 
pda: percent discretionary accruals, annual sort 

pda -0.21 -0.88 0.38 1.35 -0.27 -1.98 0.06 0.41 

cag: current asset growth, n=1, 6, 12 
cagq1 0.56 2.36 0.51 1.58 0.58 3.40 0.44 2.56 

cagq6 0.35 1.60 0.30 1.14 0.31 1.88 0.18 1.01 
cagq12 0.22 1.03 0.19 0.81 0.16 1.03 0.05 0.30 

ncag: non-current asset growth, n=1, 6, 12 

ncagq1 0.11 0.53 0.36 1.50 0.37 2.11 0.33 1.63 
ncagq6 0.03 0.13 0.28 1.23 0.16 1.01 0.16 0.78 
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ncagq12 0.00 0.00 0.35 1.74 0.09 0.62 0.18 0.93 

cashg: cash growth, n=1, 6, 12 
cashgq1 0.41 1.84 0.25 1.38 0.25 1.93 0.17 1.52 

cashgq6 0.27 1.38 0.18 0.97 0.15 1.19 0.04 0.41 
cashgq12 0.11 0.61 0.06 0.37 0.02 0.20 -0.09 -0.89 

fag: fixed asset growth, n=1, 6, 12 
fagq1 0.25 1.11 0.50 1.78 0.40 2.48 0.37 1.88 

fagq6 0.14 0.65 0.47 1.90 0.27 1.83 0.36 2.02 

fagq12 0.04 0.22 0.47 2.04 0.22 1.62 0.32 1.81 
nccag: non-cash current asset growth, n=1, 6, 12 

nccagq1 0.51 1.94 0.34 1.02 0.57 3.21 0.44 2.08 
nccagq6 0.40 1.73 0.29 1.08 0.30 1.83 0.19 1.00 

nccagq12 0.26 1.15 0.24 1.03 0.16 1.08 0.13 0.71 

oag: other asset growth, n=1, 6, 12 
oagq1 -0.06 -0.41 0.05 0.26 0.18 1.37 0.17 1.06 

oagq6 -0.25 -1.80 -0.12 -0.73 -0.05 -0.42 -0.03 -0.20 
oagq12 -0.21 -1.54 -0.03 -0.18 -0.09 -0.85 -0.01 -0.10 

 

Panel G. Others 

 Value-Weighted Strategies Equal-Weighted Strategies 

 Raw 

return 

t-stat CH4 

alpha 

t-stat Raw 

return 

t-stat CH4  

alpha 

t-stat 
adm: advertising expense-to-market, annual sort 
adm 0.48 2.53 0.04 0.23 0.47 3.55 0.13 0.87 
gad: growth in advertising expense, annual sort 

gad 0.07 0.41 0.17 0.76 0.15 1.24 0.23 1.41 

rdm: R&D expense-to-market equity, n=1, 6, 12 
rdm 0.43 1.51 -0.04 -0.12 0.51 2.66 0.15 0.65 

rdmq1 0.88 2.56 -0.02 -0.04 1.10 4.62 0.54 1.72 
rdmq6 0.64 2.05 0.10 0.24 0.73 3.36 0.36 1.22 

rdmq12 0.54 1.86 0.03 0.07 0.69 3.38 0.32 1.19 

rds: R&D expense-to-sales, n=1, 6, 12 
rds -0.06 -0.23 -0.08 -0.28 0.07 0.41 0.42 1.90 

rdsq1 -0.17 -0.62 -0.23 -0.77 -0.04 -0.22 0.33 1.61 
rdsq6 -0.07 -0.26 -0.13 -0.46 -0.04 -0.31 0.29 1.71 

rdsq12 -0.14 -0.58 -0.19 -0.74 -0.03 -0.23 0.27 1.53 
ol: operating leverage, n=1, 6, 12 

ol -0.03 -0.13 -0.28 -1.02 0.17 1.19 -0.10 -0.58 

olq1 0.18 0.83 -0.10 -0.46 0.39 2.75 0.01 0.07 
olq6 0.06 0.30 -0.16 -0.66 0.30 2.29 0.01 0.07 

olq12 0.09 0.44 -0.13 -0.55 0.31 2.31 0.01 0.08 
hn: hiring rate, annual sort 

hn -0.17 -0.70 0.18 0.60 0.03 0.18 0.25 1.39 

age: firm age, n=1, 6, 12 
age1 0.14 0.50 0.14 0.37 -0.11 -0.48 0.09 0.29 

age6 0.05 0.19 0.06 0.20 -0.19 -0.93 0.01 0.02 
age12 -0.07 -0.29 -0.09 -0.31 -0.30 -1.45 -0.15 -0.50 

dsi: % change in sales minus % change in inventory, annual sort 
dsi 0.10 0.57 -0.06 -0.28 0.11 1.10 0.00 -0.01 

dsa: % change in sales minus % change in accounts receivable, annual sort 

dsa 0.14 0.81 0.16 0.83 0.01 0.08 -0.10 -0.77 
dgs: % change in gross margin minus % change in sales, annual sort 

dgs 0.05 0.22 0.05 0.26 0.11 0.82 0.07 0.52 
dss: % change in sales minus % change in SG&A, annual sort 

dss -0.03 -0.16 -0.14 -0.51 0.01 0.04 0.03 0.18 

etr: effective tax rate, annual sort 
etr -0.26 -1.23 0.07 0.22 -0.08 -0.77 -0.02 -0.13 
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lfe: labor force efficiency, annual sort 

lfe 0.04 0.17 0.08 0.30 -0.03 -0.26 -0.23 -1.27 
tan: tangibility, n=1, 6, 12 

tan 1.02 3.13 0.63 1.45 0.42 1.63 0.30 0.83 
tanq1 0.92 3.26 0.75 1.75 0.33 1.50 0.22 0.76 

tanq6 0.97 3.42 0.64 1.56 0.40 1.87 0.26 0.87 
tanq12 0.96 3.41 0.63 1.53 0.46 2.09 0.29 0.93 

vcf: cash flow volatility, n=1, 6, 12 

vcf1 -0.11 -0.47 -0.24 -0.93 -0.42 -2.15 -0.25 -1.07 
vcf6 -0.09 -0.35 -0.22 -0.76 -0.42 -2.10 -0.38 -1.63 

vcf12 -0.06 -0.24 -0.20 -0.67 -0.45 -2.31 -0.42 -1.86 
cta: cash-to-assets, n=1, 6, 12 

cta1 0.75 2.78 0.86 2.44 0.50 2.32 0.41 1.36 

cta6 0.68 2.46 0.89 2.74 0.49 2.37 0.45 1.53 
cta12 0.62 2.18 0.81 2.41 0.46 2.28 0.43 1.46 

eper: earnings persistence, annual sort 
eper 0.44 1.30 0.42 1.19 0.39 1.79 0.36 1.46 

eprd: earnings predictability, annual sort 

eprd 0.49 1.34 0.85 2.56 0.19 0.73 0.11 0.46 
esm: earnings smoothness, annual sort 

esm -0.22 -0.53 -0.20 -0.56 -0.10 -0.43 -0.01 -0.07 
evr: value relevance of earnings, annual sort 

evr 0.51 1.97 0.67 2.16 0.30 1.52 0.48 2.34 
etl: earnings timeliness, annual sort 

etl 0.09 0.33 0.25 0.68 -0.03 -0.20 -0.09 -0.44 

ecs: earnings conservatism, annual sort 
ecs -0.10 -0.43 -0.06 -0.22 -0.10 -0.65 -0.10 -0.57 

ala: asset liquidity, n=1, 6, 12 
ala 0.37 1.35 0.44 1.21 0.17 0.92 0.24 1.04 

alaq1 0.97 4.05 0.92 2.34 0.52 3.07 0.47 1.88 

alaq6 0.81 3.34 0.65 1.81 0.54 3.18 0.39 1.55 
alaq12 0.74 3.12 0.59 1.72 0.49 2.82 0.36 1.41 

alm 0.44 1.23 -0.09 -0.20 0.28 1.17 -0.19 -0.67 
almq1 0.50 1.28 0.00 -0.01 0.70 2.23 0.37 0.86 

almq6 0.54 1.41 0.05 0.10 0.61 2.05 0.23 0.58 
almq12 0.52 1.34 0.01 0.01 0.50 1.73 0.08 0.21 

tes: tax expense surprises, n=1, 6, 12 

tes1 0.64 2.83 0.55 2.00 0.62 4.35 0.46 2.67 
tes6 0.54 3.40 0.35 1.69 0.46 3.69 0.24 1.79 

tes12 0.46 3.16 0.34 2.06 0.33 3.14 0.20 1.81 
def: changes in analyst earnings forecast, n=1, 6, 12 

def1 0.81 2.11 0.50 1.42 0.71 3.46 0.43 2.18 

def6 0.31 1.84 0.21 0.99 0.42 3.69 0.32 2.26 
def12 0.33 2.43 0.23 1.93 0.33 3.47 0.21 2.21 

re: revisions in analyst earnings forecast, n=1, 6, 12 
re1 -0.21 -0.52 -0.39 -0.84 0.50 1.64 0.30 0.85 

re6 -0.05 -0.18 -0.49 -1.36 0.34 1.29 -0.02 -0.07 
re12 0.07 0.33 -0.31 -1.39 0.12 0.58 -0.22 -1.05 

efp: analyst earnings forecast-to-price, n=1, 6, 12 

efp1 0.84 1.60 -0.87 -1.91 1.06 2.35 -0.13 -0.29 
efp6 0.30 0.57 -1.01 -2.26 0.49 1.14 -0.46 -1.11 

efp12 0.06 0.12 -0.86 -1.89 0.26 0.63 -0.47 -1.09 
ana: analyst coverage, n=1, 6, 12 

ana1 0.27 0.56 0.49 1.31 0.26 0.80 0.56 2.12 

ana6 0.21 0.51 0.36 1.20 0.21 0.70 0.39 1.57 
ana12 0.22 0.57 0.32 1.17 0.15 0.55 0.32 1.37 
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dis: dispersion in analyst forecasts, n=1, 6, 12 

dis1 -0.05 -0.14 0.47 1.00 -0.15 -0.84 0.12 0.52 
dis6 -0.02 -0.09 0.30 1.10 -0.06 -0.45 0.06 0.46 

dis12 -0.10 -0.44 0.17 0.84 -0.10 -0.67 -0.04 -0.30 
io: institutional ownership, n=1, 6, 12 

io 0.48 1.65 -0.02 -0.05 0.19 0.72 0.01 0.03 
io1 0.76 2.55 0.41 1.34 0.43 1.75 0.13 0.46 

io6 0.65 2.58 0.17 0.68 0.24 1.05 0.01 0.06 

io12 0.53 2.16 0.08 0.32 0.14 0.60 -0.04 -0.15 
soe: SOE indicator, n=1, 6, 12 

soe1 -0.22 -0.94 -0.34 -1.58 -0.05 -0.34 -0.13 -0.73 
soe6 -0.18 -0.78 -0.31 -1.43 -0.07 -0.49 -0.13 -0.77 

soe12 -0.16 -0.69 -0.25 -1.10 -0.08 -0.50 -0.13 -0.77 

margin: margin trading and short selling indicator, n=1, 6, 12 
margin1 0.29 1.85 0.48 2.93 0.01 0.04 -0.04 -0.27 

margin6 0.23 1.41 0.40 2.35 -0.07 -0.30 -0.10 -0.65 
margin12 0.14 0.95 0.26 1.60 -0.10 -0.46 -0.16 -1.08 
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E. Anomalies and Aggregate Market-Level Variables 

E.1 Details on Aggregate Market-Level Variables 

Trading Frictions 

Following Watanabe, Xu, Yao, and Yu (2013) and Jacobs (2016), we use idiosyncratic 

volatility as a proxy for trading frictions. For each stock, we regress its daily stock excess returns 

in a given month on the CH4 model and calculate idiosyncratic volatility as the standard deviation 

of the regression residuals. We then measure market-level trading frictions as the cross-sectional 

average of firm-level idiosyncratic volatility. 

 

Financial Market Development 

Following McLean, Pontiff, and Watanabe (2009) and Titman, Wei, and Xie (2013), we 

measure financial market development as the ratio of total market capitalization at the end of a 

given month to annual GDP from the prior year. 

 

Accounting Quality 

We collect firm-level annual accounting data quality grades (4, 3, 2, and 1 for Excellent, Good, 

Qualified, and Bad, respectively) from CNRDS. We measure market-level accounting quality as 

the average value across firms.  

 

Sentiment Index 

Following Baker, Wugler, and Yuan (2012), we construct the sentiment index as the first 

principal component of market turnover, first-month IPO return, the number of IPO firms, and 

volatility premium. Market turnover (TURN) is the natural log of total market turnover (total RMB 

volume over a year divided by total market capitalization at the end of the previous year), 

detrended with a five-year moving average. First-month IPO return (RIPO) is the equal-weighted 

average of first-month returns of IPOs in a year. Because IPOs in China are subject to daily price 

limits, we use first-month IPO returns instead of first-day IPO returns as in Baker, Wugler, and 

Yuan (2012). Number of IPO firms (NIPO) is the natural log of the number of IPOs in a year. 

Volatility premium (PVOL) is the month-end natural log of the ratio of the value-weighted average 

market-to-book ratio of high volatility stocks to that of low volatility stocks. High and low 

volatility stocks are those in the top and bottom three deciles, respectively, based on the variance 

of monthly returns in the previous year. We standardize the four sentiment proxies to have zero 

mean and unit standard deviation and then take the first principal component to construct the 

sentiment index: 

𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝑡 = 0.19 ∗ 𝑇𝑈𝑅𝑁𝑡 + 0.59 ∗ 𝑃𝑉𝑂𝐿𝑡 + 0.47 ∗ 𝑁𝐼𝑃𝑂𝑡 + 0.63 ∗ 𝑅𝐼𝑃𝑂𝑡,   (E1) 

where the first principal component explains about 43% of total variance. 

 

Market Liquidity 

Following Chordia, Subrahmanyam, and Tong (2014), we first calculate monthly firm-level 

share turnover as the total trading volume for a given month divided by the number of free-float 

A-shares outstanding at the end of the previous month. We then measure market liquidity as the 

average share turnover across firms. 

To decompose market turnover into retail investor turnover and large trader turnover, we 

obtain daily stock order imbalance data from the China Stock Market and Accounting Research 

(CSMAR) database. Based on Lee and Ready (1991), the dataset classifies total trading volume 
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into buying-initiated and selling-initiated volume for very large trades (greater than 

RMB1,000,000), large trades (greater than RMB200,000 million but less than RMB1,000,000), 

medium trades (greater than RMB40,000 RMB but less than RMB200,000), and small trades (less 

than RMB40,000). The sample period is from January 2003 to December 2020. Following the 

spirit of Lee and Radhakrishna (2000), Barber, Odean, and Zhu (2009), and Jiang, Liu, Peng, and 

Wang (2022), which assume that trades with the largest size are more likely to come from large 

and sophisticated investors, we use the largest size trades as a proxy for institutional investors and 

trades from the other groups as a proxy for retail investors. For retail investor turnover, we first 

calculate monthly firm-level retail investor turnover as the total trading volume (sum of buying-

initiated and selling-initiated volume) from small, medium, and large trades for a given month 

divided by the number of free-float A-shares outstanding at the end of the previous month. We 

then measure retail investor turnover as the average value across firms. For large trader turnover, 

we first calculate monthly firm-level large trader turnover as the total trading volume (sum of 

buying-initiated and selling-initiated trading volume) from very large trades for a given month 

divided by the number of free-float A-shares outstanding at the end of the previous month. We 

then measure large trader turnover as the average value across firms.  

 

Regulation Index 

Given the strong presence of regulations in the Chinese stock market, we construct a 

regulation index to capture important regulatory interventions on investor composition and trading 

behavior. The first regulation we consider is the split-share structure reform, which converts non-

floating shares to floating shares issued to the general public. For a given month, we measure the 

percentage of firms that have completed the reform. The second important regulation is the pilot 

program on margin trading and short selling, designed to deepen and diversify investor 

participation. Starting from March 2010, regulators expanded the number of stocks included in the 

pilot program five times. We measure the percentage of firms included in the program in a month. 

Finally, we use the percentage of firms that are IPOs in a month to measure the government’s 

desires to further stock market development versus concerns about overheating and speculation in 

the stock market. We scale the three regulation proxies to [0, 1] and then take the simple average 

to construct the regulation index. 
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Figure E1. Time-Series Plots of Market-Level Variables 
This figure plots the time series of the six aggregate market-level variables, including trading frictions, financial 

market development, accounting quality, sentiment index, market liquidity, and regulation index, from 2000 to 2020. 
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E.2 Panel Regressions 

Table E1. Anomaly Returns and Different Types of Turnover 
This Table reports the regression coefficients and t-statistics from regressing the high-minus-low returns of all 

univariate strategies (and trading-based and accounting-based strategies separately) on the six market-level variables 

as well as the CH4 factors. The six market-level variables include: trading frictions (FRIC), which are the average 

firm-level idiosyncratic volatility based on the CH4 model, financial market development (DEV), which is the ratio 

of total market capitalization to GDP, accounting quality (ACCQ), which is the average firm-level accounting data 

quality grade from CNRDS, investor sentiment (SENT), which is the first principal component of market turnover, 

first-month IPO return, the number of IPO firms, and the volatility premium, market liquidity (LIQ), which is the 

average firm-level monthly retail or large trader turnover, and regulation (REGU), which is the average value of the 

percentages of listed firms that are recent IPOs, that allow margin trading and short selling, and that have completed 

the split-share reform. The regressions are estimated with strategy fixed effects and standard errors double-clustered 

by strategy and month. In Panel A, retail investor turnover (LIQ_Retail) is constructed with trading volume from small, 

medium, and large trades. In Panel B, large trader turnover (LIQ_Large) is measured with trading volume from very 

large trades. Panel C includes both retail investor turnover and large trader turnover. 

 

Panel A. Retail Investor Turnover 

 Value-Weighted Strategies Equal-Weighted Strategies 

 I II III IV V VI 

 All Trading-based Accounting-based All  Trading-based Accounting-based 

FRIC -0.11 -0.16 -0.07 -0.07 -0.13 -0.03 

 (-1.14) (-0.99) (-1.28) (-0.72) (-0.80) (-0.25) 

DEV -0.14* -0.30*** -0.01 -0.21** -0.34** -0.10 

 (-1.86) (-2.65) (-0.13) (-2.19) (-2.51) (-0.77) 

ACCQ -0.22** -0.28* -0.16** -0.22** -0.21 -0.23** 

 (-2.33) (-1.91) (-1.98) (-2.43) (-1.41) (-1.96) 

SENT 0.00 -0.03 0.02 -0.04 -0.04 -0.04 

 (-0.06) (-0.29) (0.49) (-0.74) (-0.41) (-0.67) 

LIQ_Retail 0.26*** 0.37** 0.16** 0.23** 0.41** 0.08 
 (2.58) (2.17) (2.55) (2.21) (2.38) (0.68) 

REGU 0.34*** 0.67*** 0.04 0.41*** 0.65*** 0.21 
 (2.92) (3.52) (0.41) (3.54) (3.14) (1.46) 

MKT -0.03*** -0.07*** 0.01 -0.03*** -0.08*** 0.01 

 (-2.88) (-4.62) (1.57) (-3.16) (-5.12) (1.32) 

SMB -0.03 0.06 -0.12*** -0.01 0.08** -0.08*** 

 (-1.18) (1.21) (-5.28) (-0.24) (2.05) (-3.71) 

VMG 0.16*** 0.11*** 0.21*** 0.17*** 0.14*** 0.20*** 

 (6.06) (2.60) (7.61) (8.66) (4.41) (7.65) 

PMO 0.06*** 0.13*** 0.01 0.04** 0.10*** -0.01 

 (3.55) (4.03) (0.77) (2.40) (3.23) (-0.37) 

Observations 96,186 44,520 51,666 96,186 44,520 51,666 

Adj.R2 2.3% 2.3% 6.4% 4.4% 5.5% 8.7% 
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Panel B. Large Trader Turnover 

 Value-Weighted Strategies Equal-Weighted Strategies 

 I II III IV V VI 

 All Trading-based Accounting-based All  Trading-based Accounting-based 

FRIC -0.01 -0.02 -0.01 -0.03 0.00 -0.06 

 (-0.15) (-0.13) (-0.18) (-0.46) (-0.02) (-0.69) 

DEV -0.16** -0.33*** -0.02 -0.24** -0.38*** -0.12 

 (-2.11) (-2.99) (-0.31) (-2.41) (-2.85) (-0.88) 

ACCQ -0.24** -0.31** -0.18** -0.27*** -0.27* -0.28** 

 (-2.41) (-2.01) (-2.03) (-2.93) (-1.78) (-2.43) 

SENT -0.08 -0.14 -0.03 -0.14*** -0.18* -0.11 

 (-1.38) (-1.38) (-0.60) (-2.68) (-1.93) (-1.63) 

LIQ_Large 0.14 0.21 0.09 0.21** 0.28* 0.15 
 (1.59) (1.49) (1.38) (2.28) (1.93) (1.53) 

REGU 0.43*** 0.81*** 0.10 0.51*** 0.81*** 0.25* 
 (3.75) (4.37) (0.91) (4.43) (4.15) (1.74) 

MKT -0.02** -0.06*** 0.02** -0.03*** -0.07*** 0.01 

 (-2.38) (-4.75) (2.04) (-3.19) (-5.52) (1.31) 

SMB -0.03 0.08 -0.11*** 0.00 0.10** -0.08*** 

 (-0.89) (1.51) (-5.03) (0.08) (2.53) (-3.82) 

VMG 0.16*** 0.11*** 0.21*** 0.17*** 0.15*** 0.20*** 

 (6.06) (2.65) (7.57) (8.59) (4.54) (7.63) 

PMO 0.06*** 0.13*** 0.01 0.04*** 0.10*** -0.01 

 (3.65) (4.14) (0.78) (2.59) (3.43) (-0.40) 

Observations 96,186 44,520 51,666 96,186 44,520 51,666 

Adj.R2 2.3% 2.2% 6.4% 4.4% 5.4% 8.7% 

Panel C. Retail and Large Trader Turnover 

 Value-Weighted Strategies Equal-Weighted Strategies 

 I II III IV V VI 

 All Trading-based Accounting-based All  Trading-based Accounting-based 

FRIC -0.13 -0.19 -0.08 -0.12 -0.17 -0.07 

 (-1.28) (-1.11) (-1.28) (-1.33) (-1.13) (-0.70) 

DEV -0.14* -0.30*** -0.01 -0.23** -0.36*** -0.11 

 (-1.88) (-2.72) (-0.16) (-2.27) (-2.59) (-0.87) 

ACCQ -0.23** -0.30** -0.17** -0.26*** -0.25* -0.27** 

 (-2.39) (-1.98) (-1.98) (-2.86) (-1.73) (-2.44) 

SENT -0.02 -0.06 0.01 -0.10* -0.10 -0.10 

 (-0.40) (-0.55) (0.13) (-1.70) (-0.95) (-1.43) 

LIQ_Retail 0.24** 0.34* 0.15** 0.17 0.35* 0.02 

 (2.13) (1.80) (2.03) (1.38) (1.76) (0.16) 

LIQ_Large 0.05 0.08 0.03 0.14 0.15 0.15 
 (0.47) (0.47) (0.41) (1.22) (0.82) (1.22) 

REGU 0.35*** 0.69*** 0.05 0.45*** 0.69*** 0.25* 
 (2.94) (3.57) (0.48) (3.64) (3.34) (1.71) 

MKT -0.03*** -0.07*** 0.01 -0.03*** -0.08*** 0.01 

 (-2.96) (-4.73) (1.55) (-3.45) (-5.34) (1.22) 

SMB -0.03 0.06 -0.12*** -0.01 0.08** -0.08*** 

 (-1.18) (1.21) (-5.27) (-0.23) (2.07) (-3.77) 

VMG 0.16*** 0.10*** 0.21*** 0.17*** 0.14*** 0.20*** 

 (6.04) (2.59) (7.59) (8.59) (4.37) (7.65) 

PMO 0.06*** 0.13*** 0.01 0.04** 0.10*** -0.01 

 (3.59) (4.07) (0.77) (2.52) (3.30) (-0.40) 

Observations 96,186 44,520 51,666 96,186 44,520 51,666 

Adj.R2 2.3% 2.3% 6.4% 4.4% 5.5% 8.7% 
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F. Composite Strategies  

F.1 Machine Learning Algorithms 

Lasso 

Following Gu, Kelly, and Xiu (2020), we first estimate a linear regression of stock returns on 

a set of lagged signals using panel data, 

𝑅𝑖,𝑡 = 𝜃0 + ∑ 𝜃𝑗𝑠𝑖𝑔𝑛𝑎𝑙𝑖,𝑗,𝑡−1
𝑟𝐽

𝑗=1 + 𝜖𝑖,𝑡,  𝑡 ∈ 𝜏,                (F1) 

where 𝑅𝑖,𝑡  is the standardized ranking of stock i's return in month 𝑡 , 𝑠𝑖𝑔𝑛𝑎𝑙𝑖,𝑗,𝑡−1  is the 

standardized ranking of signal j for stock i in month 𝑡-1, and 𝜏 indicates the regression model 

estimation period. To deal with heavy-tailed observations, we follow Gu, Kelly, and Xiu (2020) 

and use the Huber robust objective function, which is defined as 

𝐿𝐻(𝜃) =
1

𝑁
∑ ∑ 𝐻(

𝑁𝑡
𝑖=1𝑡∈𝜏 𝑅𝑖,𝑡 − 𝜃0 − ∑ 𝜃𝑗𝑠𝑖𝑔𝑛𝑎𝑙𝑖,𝑗,𝑡−1

𝑟𝐽
𝑗=1 , ξ),             (F2) 

where  

𝐻(𝑧, 𝜉) = {
 𝑧2,                    if |𝑧| ≤ 𝜉; 

2𝜉|𝑧| − 𝜉2,     if |𝑧| > 𝜉.
. 

The Huber loss, 𝐻(. ), incorporates hybrid squared losses for relatively small errors and absolute 

losses for relatively large errors, where the threshold is determined by a tuning parameter, 𝜉. N is 

the total number of observations across all firms in the model estimation period, and 𝜃 is the 

parameter vector containing the parameters {𝜃0, 𝜃1, … , 𝜃𝐽} . Different from multiple linear 

regression models which can overfit data in the presence of many signals, Lasso appends a 

parameter penalty to the original Huber loss function in equation (F2) to avoid overfitting. Thus, 

the Lasso Huber loss function becomes 

𝐿𝐻
𝐿𝑎𝑠𝑠𝑜(𝜃) = 𝐿𝐻(𝜃) + 𝜆 ∑ |𝜃𝑗|𝐽

𝑗=1 ,                     (F3) 

where 𝜆 ∑ |𝜃𝑗|
𝐽
𝑗=1   is the penalty function based on absolute parameter values, and 𝜆  is the 

nonnegative hyper-parameter (tuning parameter). A large 𝜆  indicates a big penalty for the 

parameters, which would reduce more estimated parameters towards zero.  

We follow the literature for model estimation, hyper-parameter selection, and performance 

evaluation. We divide our sample period into three subperiods: five years for the training period 

(July 2000 – June 2005), five years for the validation period (July 2005 – June 2010), and 11 years 

for the out-of-sample testing period (July 2010 – December 2020). We use the training period to 

estimate the model parameters subject to some pre-specified hyper-parameters. The validation 

period is used to optimize the hyper-parameters. We iteratively search for the hyper-parameters 

that minimize mean squared forecast errors for the validation period. The out-of-sample testing 

period is used to estimate expected returns and evaluate model performance. Since machine 

learning methods are computationally intensive, we follow Gu, Kelly, and Xiu (2020) and 

Leippold, Wang, and Zhou (2022) to refit the model every year instead of every month. Each time 

we refit the model, we extend the training period by one year, maintain the length of the validation 

period, but roll it forward to include the most recent 12 months of data.  

 

Random Forest 

Following Gu, Kelly, and Xiu (2020), we repeatedly draw random samples from the original 

data with replacements, resulting in samples having the same number of observations as the 
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original data. For each bootstrapped sample, we then construct a regression tree using a random 

subset of signals. The regression tree consists of a set of decision rules, which categorize stocks 

into multiple disjoint subgroups (“leaves”) that behave similarly to each other (more details below). 

Using a random subset of signals ensures low correlation among regression trees, further 

improving variance reduction relative to standard bagging. For each regression tree, we calculate 

the average return of the leaves that a stock is clustered into and obtain its predicted return. We 

repeat the above procedure for each of B bootstrapped samples of the data. The final expected 

return estimate, 𝑅̂𝑖,𝑡+1, is the average of the predicted returns from B regression trees. 

 

Regression Tree 

Each regression tree contains a set of internal nodes and leaves. At each node, the tree chooses 

a splitting variable to generate two disjoint branches based on a split point. The regression tree 

“grows” by sequentially developing branches until it reaches the leaves (terminal nodes). The 

decision rule of a regression tree is based on clustering observations into one of the “leaves”. 

Mathematically, a regression tree with K leaves and depth L can be represented as: 

𝑔(𝑥𝑖,𝑡; 𝜃, 𝐿, 𝐾) = ∑ 𝜃𝑘1{𝑥𝑖,𝑡∈𝐶𝑘(𝐿)}
𝐾
𝑘=1 ,                (F4) 

where 𝑔(𝑥𝑖,𝑡; 𝜃, 𝐿, 𝐾) is the conditional expectation of stock i’s excess return, 𝑥𝑖,𝑡 is the vector 

of signals {𝑠𝑖𝑔𝑛𝑎𝑙𝑖,𝑗,𝑡
𝑟 },  𝐶𝑘(𝐿)  is the k-th partition of the data, and the depth L is the largest 

number of nodes in a complete branch (from the top node to any terminal node). Suppose we 

cluster stock i with signals 𝑥𝑖,𝑡 into the k-th leaf of the tree, then the predicted stock return from 

the regression tree is 𝜃𝑘, which is the average value of outcomes within the k-th leaf. We refer to 

James, Witten, Hastie, and Tibshirani (2013) for an excellent description on selecting splitting 

variables and split points for the basic tree model. 

 

Table F1. Hyper-parameters for Lasso and Random Forest 
 Lasso Random Forest 

Parameters 𝜆 ∈ (10−4, 2 ∗ 10−2), 

Huber loss 𝜉 ∈ (0.1, 0.2). 

# depth L= 2-6,  

# trees B = 100-150,  

# features M=3-50. 
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F.2 Additional Results on Composite Strategies 

Table F2. Composite Strategies Using Percentile Rankings 
This table reports the average high-minus-low raw returns, CH4 alphas, and their associated t-statistics of the four 

composite strategies constructed using percentile rankings instead of standardized rankings, over the period from July 

2010 to December 2020. Data from July 2000 to June 2010 are used to establish the initial estimates of the composite 

signals. Panel A presents the results for the all-but-micro main sample, and Panel B reports the results for all Chinese 

firms.  

 

Panel A. All-But-Micro Main Sample 

 Composite Score Multiple Regression Lasso Random Forest 

 Return t-stat Return t-stat Return t-stat Return t-stat 

Value-Weighted Strategies 

Raw return 1.68 3.47 2.54 6.00 2.68 5.39 2.87 5.98 

CH4 alpha 0.19 0.55 1.12 3.70 1.15 2.47 1.35 4.05 

Equal-Weighted Strategies 

Raw return 2.06 6.98 3.11 9.39 3.23 8.03 3.05 8.13 

CH4 alpha 0.88 3.35 1.77 7.32 1.79 5.66 1.66 6.05 

 

Panel B. All Chinese Firms 

 Composite Score Multiple Regression Lasso Random Forest 

 Return t-stat Return t-stat Return t-stat Return t-stat 

Value-Weighted Strategies 

Raw return 1.75 3.83 2.73 6.39 2.89 5.32 3.35 6.47 

CH4 alpha 0.30 0.91 1.37 4.34 1.47 3.00 1.79 4.91 

Equal-Weighted Strategies 

Raw return 2.13 8.50 3.38 10.15 3.55 8.19 3.41 8.64 

CH4 alpha 1.02 3.99 2.13 8.31 2.20 6.43 2.06 6.63 
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